
Sept. 2013 CEE 3804 Faculty

Language Fundamentals

VBA Concepts

Language Fundamentals

1. Statements
2. Data Types
3. Variables and Constants
4. Functions
5. Subroutines

2

Data Types

1. Numeric
Integer
Long integer
Single-precision
Double-precision
Currency

2. Character Strings
Variable length
Fixed length

3. Variant in VBA

3

Numeric Data Types, VBA
• Integers in VBA, Short in VB*

• Two bytes
• 32,767 to -32,768

• Long Integers in VBA, Integers in VB*
• Four bytes
• 2,147,483,647 to -2,147,483,648

• Single Precision
• Four bytes
• -3.402833E+38 to -1.40129E-45 negative
• 1.40129E-45 to 3.402823E+32 positive

• Double Precision
• Eight bytes
• -1.7977E+308 to -4.9407E-324 negative
• 4.9407E-324 to 1.7977E+308 positive

* Integer types in VB are larger than same named types in VBA
4

Integers
 Integers are whole numbers
 They may be either positive or negative
 The range of VBA integers is -32767 to +32787
 If the number if positive it is not necessary to put a +

sign in front of the number
 You cannot use commas to separate groups of digits in

an integer
 Examples of valid integers are:

 1234 -13550 1667 -340
 15 -30000 -5002 221

 Examples of invalid integers are:

-50000 35000 3,456 3.123

5

Long Integers
 A long integer can hold a whole number but it can store

a larger range of values
 VBA uses “Long” for this data type, VB uses “Integer”
 The range of values that can be stored in a long integer

is -2,147,483,648 to +2,147,483,648
 To declare a long integer variable you use the following

declaration statement

DIM x as Long

 Examples of some long integer constants are the
following

32895 65483 -68957
 56658 -1236978 58960321

6

Single Precision

 A real number is a number which contains
a decimal point. In Basic real numbers can
be represented as single precision
numbers or as double precision numbers

 Real numbers cannot be represented in a
computer exactly - only approximately

 Single precision numbers are accurate to
the first seven digits

 4 bytes of storage space

7

Single Precision Numbers

 Single precision numbers can be written using
fixed point notation or exponential notation

 The range of single precision numbers is from
approximately -3.4E+38 to +3.4E+38

 Examples of single precision numbers are:

 102.3 0.00034 5678.90
 10.5e-3 100E10 -5.67e-35
 22! -35! 12.4e-27

8

Double Precision Numbers
 Double precision numbers are accurate to 15 or

16 digits
 8 bytes of storage space
 The range of double precision numbers is from

approximately -1.8D+308 to +1.8D-308
 The letter D is used to represent the exponent

(instead of the letter E)
 Examples of double precision numbers are:

 12345.6789012345 0.000012345036953
 10.24D-300 12.687D+300

9

Currency
 This data type is designed specifically to store

financial information

 Currency values are in fixed-point format with up
to 15 digits before the decimal and 4 digits after
the decimal point

 The range of numbers is from
922,337,203,685,477.5805, to
+922,337,203,685,477.5807

10

Strings

 There are two types of stings:
 variable length
 fixed length

 In a variable length string, the stored string can
be of any length (up to 65,500 characters)

 Sequence of alphanumeric characters enclosed
by double quotation marks

 “What is your name?”
“Enter yield strength of steel”

11

Strings

 A fixed length string stores a string value of a
predetermined length.

 You declare the fixed length to be from 0 to 32,767
characters.

 The length of the string cannot change

12

Variant Data Type
 A variant is a data type that can store data of any

other type
 The stored value can be numeric, string, or date/time

information
 Visual Basic automatically converts a value stored in

a Variant variable to the necessary data type

Dim x as Variant
x = “35” ‘ string stored
Print 2 * x ‘ string converted

 A variant variable actually stores two pieces of
information: a value, and a code number indicating
its data type

13

Boolean Data Type
 Logical constants that take two possible

values:
– True
– False

 Example

14

Boolean Example

15

Variables
 Permit us to access data stored in memory through the use

of symbolic names
 Value of a variable can change during program execution
 Made up of the letters A to Z, digits 0 to 9, and underscore

(_).
 First character must be a letter of the alphabet. Cannot

begin with a number or a period
 Can be from 1 to 40 characters long
 Cannot match any reserved words such as

– If Then Input While

 May end with the symbols %, !, #, $, & and @

16

Variable Names

Suggestions for Naming Variables
 Use lower case character for first letter
 Use lowercase for remaining characters
 Uppercase for first letter of compound name

number firstRoot volume
 sum mean surfaceArea
 maxValue minValue counter

 BASIC is NOT type sensitive (be careful)
Number NUMBER NumBer number

are all considered to be the same
 Avoid short non-descriptive names

17

Declaring Variables

Dim x As Single
Dim y As Integer
Dim z1 AS String
Dim z2 AS String*10
Dim a AS Double
Dim z as Variant
Dim bigNum as Long
Dim dollars as Currency

NOTE: Type declaration characters take precedence

18

Forcing Declarations
 You can force all variables to be declared by

using the following statement:

Option Explicit

 The Option Explicit statement is placed in the
Declarations section.

 It requires that all variables be declared within
that form or module

19

Option Explicit

 If you try to use an undeclared variable, you
will get a “Variable not declared” error
message

 You can have Visual Basic automatically
place this statement in your program by
specifying it in the Environment menu

 Decreases possible program "bugs"

20

Example of Option Explicit

Note: all variables have to be defined in the function
Trapezoid because the “Option Explicit” setting

21

Type Declaration Characters

Special character at the end of a variable name which
indicates the type of variable
Data Type Type Declaration

 Character

Integer %
Long &
Single-precision !
Double-precision #
Currency @
String $

22

Type Declaration Characters

 Examples

count% total! Root!
sum# ssNum$ yourName$
errorFlag% longVal& bigNum&

car$, car%, car#, car&, car! are all different variables
in Visual Basic for Applications

23

Example of Type Declaration

Note: variable “sum” has an explicit type declaration character.
In this case sum is defined as 0.0 and VBA types 0#

24

Symbolic Constants
 Can be used in place of numeric or string values

 Const MAXSIZE = 50
 Dim xArray(MAXSIZE)

 Const BLACK = 0, BLUE = 1, WHITE = 15

 Const NUMCOLS = 5

 Try using all uppercase letters for symbolic constants

 In VB (not VBA) also declare data type as part of
constant declaration
Const MAXSIZE as integer=50
 Const PI as double = 3.1417

25

VarType Function
 Use the VarType function to inspect the variable

type in VBA

 Use:
VarType (varname)

Where: varname is the variable in question

26

VarType Function Codes

Boolean11

String8

Double5

Single4

Long3

Integer2

Variable TypeValue

27

VarType Example

First time
x is assigned

28

Computational Issues
 VBA code executes faster if variable

declarations are made explicitly
 Most computers today are optimized to do

floating point computations so “double”
variables do not add a great deal of CPU time in
execution

 In fact, declaring most variables as “double”
might produce faster executions times than
“single” variables

29

Example (No Variable Declarations)

30

Example (with Variable Declarations)

31

Common Errors
1. Arithmetic operations cannot be implied

z = 10(x1+2x2) ‘ illegal
z = 10*(x1+2*X2)
z = 10(x1+2x2) ‘ illegal

2. Two or more operators cannot occur consecutively
z = x + -y
z = x + (-y)

3. There must be an equal number of left and right parentheses

4. Arithmetic expression must accurately represent original sequence
of calculations

5. Variables appearing on right side of arithmetic expression must be
assigned values prior to their use.

32

Mixed Mode Arithmetic

• BASIC converts all operands in the statement so they have
the same precision as the most precise operand

 z = 3/4 0.75
 a% = 200/3 67
 a = 200/3 66.66666
 a# = 200/3 66.666666666666667
 a# = 200#/3 66.666666666666667

 In integer division operands are rounded to integers before
division and result are truncated

 a = 8.4/9 0
 a = 8.99/9 1
 a = 8/3 2

33

Comments
 A well written program is easy to understand by both

the programmer and users
 Comments are non-executable statements with

means that the computer ignores these statements
during program execution

 Comments enhance make your program more
readable

 Comments are an invaluable part of your program
 They assist you and others in understanding the logic

of the program

Rem -- This is a comment
‘ This is also a comment

34

March 07 CEE 3804 Faculty35

Effect of Declarations in
Functions and Subroutines

CEE 3804 Computer
Applications for
CEE

Modular Programming
 A consequence of top-down design is that the

problem is decomposed into smaller and simpler
sub-problems

 The program is broken up into a number of smaller
subprograms or modules

 This approach of designing programs as a series of
modules is called modular design

–

 A module is a small self-contained section of an
algorithm

 Modular design has a number of advantages

36

Advantages of Modular Design

 Modular programs are easier to write and
debug

 Each module can be written and tested
independently

 Modular programs are easier to debug
 Modules can be changes, rewritten or even

replaced
 Previously developed and tested modules can

be used in different programs
 Can develop a library of modules

37

Visual Basic Modules

 In Visual Basic a module is a source file which
can contain one or more procedure

 A procedure is either a subroutine or a function
 A module file can contain one or more

procedures
 The procedures in a module are global which

means that they can be invoked from anywhere
in the program

38

Recall Procedures in VBA
 There are two types of procedures (subprograms)

in Visual Basic

 Subroutines
– Sub End Sub

– Can return zero or more values. Cannot be used in as
expression

 Functions
– Function End Function

– Can return only one value. Can be used in expressions.
Similar to the Visual Basic built-in functions such as
Abs, Log, Sin

39

Functions
 A function consists of a block of instructions

that begins with the Function statement and
ends with an End Function

 Functions are invoked the same way as Visual
Basic built-in functions

 You specify the name of the function in
expressions, as arguments in statements or
other functions

 Can use a function in any place you can use a
built-in function

 Functions can only return one value

40

Functions
 Syntax

Function functionName (parmlist)

 functionName =

End Function

assign value
to functionName in
VBA. In VB, can use
return()

41

Functions
 Parameter list contains variables that will

receive values when the function is called
 These variables are also called formal

parameters
 In VBA, must have an assignment statement in

the function body that assigns a value to
functionName

 The value assigned to functionName is the
value returned from the function

 In VB, use the return() function, e.g. return(x)
will cause the function to return the value of x

42

Functions
 General Format

[Static][Private] Function funcName [parmlist] [As type]

 funcName = expression

End Function

funcName is the name of the function

parmlist is the list of formal parameters

type specifies the type of value

expression is any general expression that has the same data
type as funcName

43

Functions
 If no data type is defined, the default is Variant in VBA,

object in VB

Function Square (x as Single) As Single
 Square = x * x
End Function

 Function Square can be called as follows:
y = Square(x)
y = Square(10)
z = y * Square(x)

44

Preferred Approach
Function fName (parm1 As type, parm2 as type) As type

 Should explicitly indicate the type of each of the formal
parameters in the function

 Should explicitly indicate the type of value returned by the
function

 Should include comments near the top to indicate what the
function does, and also what it returns

 This makes it easier to understand exactly what the function
does and how it is to be used

45

Example of a Function
Function MaxOf3(a as Single, b as Single, c As Single) As Single
‘--
‘ Purpose:
‘ Determine the largest of three numbers
‘ Input Parameters:
‘ a - first number
‘ b - second number
‘ c - third number
‘ Returns:
‘ The largest of a, b an c
‘ ---

 Dim max as Single
 If a > b And a > c Then

 max = a
 Else If b > c Then

 max = b
 Else

 max = c
 End If

 MaxOf3 = max
 End Function

46

Invoking Functions
 Functions can be used in expressions just like

variables. Consider the function

Function Log10(x as Double) as Double
 This function can be called as

y = Log10(3.4)
y = 2.3 * z * Log10(w)
y = a + Log10(b)

 The function MaxOf3 can be called as
x = MaxOf3(a,b,c)
w = z + MaxOf3(2.0, 50.0, x)
y = MaxOf3(2. * x, a, 4./z)

47

Subroutines
 Block of instructions that begins with a Sub

statement and ends with an End Sub statement

 When a Sub procedure is called, control is
transferred to the subroutine and instructions
within the subroutine are executed

 Control is transferred back to the calling
program when an End Sub statement or an Exit
Sub statement is executed

48

Subroutines
 Syntax

Sub subName (parmlist)

End Sub

 Parameter list contains variables that will receive values from the
calling program

 These variables are also called formal parameters
 Items in the parameter list are separated by commas
 Some of these variables are input variables while others are output

variables.

49

Declaring a Sub Procedure
 General syntax
[Static][Private] Sub subName[parmlist]
 instructions
[Exit Sub]
 instructions

End Sub

subName is the name of the Sub procedure
parmlist is the list of formal parameters
instructions is a block of Visual Basic instructions

50

Example of a Subroutine
Sub MaxOf3(a as Single,b as Single,c As Single, max As Single)
‘--
‘ Purpose:
‘ Determines the largest of three numbers
‘ Input Parameters:
‘ a - first number
‘ b - second number
‘ c - third number
‘ Output Parameters:
‘ max - the largest of a, b an c
‘ ---

 If a > b And a > c Then
 max = a

 Else If b > c Then
 max = b

 Else
 max = c

 End If
End Sub

51

Calling Subroutines
Call subName (argument list)

 Call statement transfers control from calling
program to subroutine

 Argument list specifies the variables that are
passed to the subroutine

52

Calling Subroutines
 There is a one-to-one correspondence between

variables in the parameter list and arguments in
the argument list

Sub MaxOf3Numbers(a,b,c,max)

Call MaxOf3Numbers(x,y,z,yMax)

a = x, b = y, x = z, max = yMax

53

Calling Subroutines
 Arguments in the argument list must correspond in number and

type to the parameters in the parameter list

 If they are not in the same order or of the same type, then the
values passed to the subprogram from the calling program will be
incorrect

 Usually the Visual Basic compiler will give an error message

Call MaxOf3Numbers(x,y,z)
Call MaxOf3Numbers(1.,2.,4. “AC”)

54

Differences Between Subroutines and
Functions

 Subroutines cannot be used in expressions
 Subroutines can return zero or more values
 Functions can only return one value
 Functions can be used in expressions
 To call a subroutine we have to use a Call

statement in VBA, or simply the subroutine name in
VB

55

Differences Between Subroutines and
Functions

 Parameter list in functions works the same as for
subroutines

 Static and Private keywords work the same as they do
with subroutines

 Exit Function is similar to Exit Sub instruction
 Main difference is that a function assigns a value to the

name of the function itself
 To call a function we do not use a call statement
 We invoke a function in the same was as we do one of

the Visual Basic built-in functions

56

Passing Arguments
 Two fundamental rules for passing arguments

1. Number of arguments in argument list and the number of formal
parameters in the parameter list must both be the same

2. The data type of each argument and its corresponding formal
parameter must match

 The most common mistakes when calling procedures are: too few
or too many arguments, or passing arguments that are not of the
same type

57

Calling Procedures
 There are two ways in which arguments are

passed to procedures

1. Call by value

2. Call by reference

58

Call By Reference
 When an argument is passed by reference the

program passes the address of the variable to
the procedure

 The procedure can use this address to access
the variable and change it contents

 Call by reference is useful if you need to receive
results from the procedure

 You should be careful when using call by
reference since the procedure can change the
value of the variable which can have adverse
side effects in your programs

59

Call by Value
 When an argument is passed by value the compiler

makes a copy of the argument and then passes this
copy to the procedure

 The procedure can change the value of the argument
but any changes it makes affects the local copy and not
the original variable

 Call by value is useful for sending “input” arguments
to a procedure

 There are several advantages to call by value
 Errors are localized since changes are made to the copy
 Side effects are minimized

60

Passing Arguments
 The default for VBA is call by reference
 In VB and VB.Net use the ByVal or ByRef to

pass by value or reference respectively.
Call MaxOf3(byval x as integer, byval y as
integer, byval z as integer, byref max as
integer)

∗ In the above example, x, y and z are passed by value.
∗ The subroutine cannot change the value of x, y, and

z.
∗ The variable max is passed by reference since the

subroutine needs to change the value of max.

61

Passing Arguments By Value
 When the actual argument is a literal, a constant

or an expression, parameter passing is by value
 In this case, Visual Basic passes the value of the

parameter rather than the address
 The value of the expression is calculated, the

result is stored in a temporary location and the
address of this temporary location is passed to
the procedure

62

Passing Parameters By Value
 You can pass parameters by value using parenthesis for the

variable in question
 Function Square ((x) as Single) As Single
 The parameter x is now passed to the procedure by value

 If you use VB 6.0 or VB.Net
 In VB 6.0 or VB.NET you place the ByVal keyword before the

formal parameter in the procedure declaration
– Function Square (ByVal x as Single) As Single

 The parameter x is now passed to the procedure by value
Sub MaxOf3Numbers(ByVal a as Single, ByVal b as Single,

ByVal c as Single, byref max as Single)

 The parameters a, b and c are now passed to the procedure by
value

63

VBA Example (Chapra’s Book pages 50-51)

64

Example (MsgBox inside Sub ValRef)

65

Example (MsgBox after Sub ValRef)

66

Storage Class, Scope and Visibility
 There are two attributes associated with each

variable
1. data type

 2. storage class

 The data type tells the VBA how much memory
should be assigned for the variable

 The storage class tells VBA how the variable is
to be stored

 The storage class also determines the visibility
and scope of the variable

67

Levels of Variable Scope

Within a
Procedure

Within a Module

All procedures in all Modules
In a Worksheet

68

Scope and Declaration
Procedure (or local) variables
 Variables declared within a procedure
 Created when procedure starts
 Destroyed when procedure terminates

Module Variables
 Variables declared at the beginning of a module
 Before the first procedure
 Can be accessed by all procedures within the module
 Created when module starts
 Destroyed when module terminates

Workbook (or Global) variables
 Variables that can be accessed by all procedures in all modules
 Created using a Public statement before the first procedure in a module

69

Local Variables
 Variables declared within the body of a function

or subroutine are local variables
 Local variables are visible to the procedure but

not to other procedures
 Local variables are created when the procedure

is executed and are destroyed when the
procedure terminates

 Local variables exist only during the duration of
the procedure

 Local variables are reinitialized each time the
procedure is executed

70

Static Variables
 Static variables are permanent variables, that

is they remain in existence for the entire
duration of the program

 You can define individual variables as static
or you can specify that all variables in a
procedure to be static

71

Static Variables
 To declare individual variables as static you use

the following syntax

Sub MySub (b as Single,c as Single)
 Static x, y, z as Single
 Static myAddress as String
 Static a as Double

 Static variable retain their values between
subroutine calls

 Static variables remain in existence for the
entire duration of the program

72

Static Variables
 Static variables are only initialized once. They

are not reinitialized
 To define all variables in a procedure to be

static you can use the following syntax

Sub MySub(a as Single) As Static
 Dim x,y,z as Single
 Dim c,d as String

 All local variables in the subroutine are static
and retain their values between calls to the
subroutine

73

Global Variables
 You should limit the number of global variables

in your program
 Global variables are accessible to all

procedures
 Programs containing global variables are

difficult to maintain and are prone to errors
 Since all procedures have access to global

variables an procedure can unknowingly
change the value of a global variable leading to
problems elsewhere which is difficult to trace.

74

Global Variables
 Global variables limit the portability of your

code
 If you have a global variable and a local variable

of the same name then all references to that
variable inside the procedure apply to the local
variable and not the global variable

75

Public and Private Procedures
 Procedures defined at the form level are

available throughout the form
 Procedures defined at the module level are

available throughout the application
 Procedures in other modules cannot invoke a

procedure declared as Private
 By using Private we can reduce the risk of

name conflicts
 Use Public to make a form level procedure

accessible outside the form

76

