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Virginia

Working with Polynomials wﬁh

Polynomials are expressed in vector form

y = 3X+2X + X+ 23

In MATLAB nomenclature thiswill be:

y=[3 2 1 23]
y:
3 2 1 23

Note: if some powers are not represented in the
polynomial just set them to zero
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Virginia

Convoluting Polynomials (J)Tech

Define another polynomial such as:

f = X+3x+1orf=[1 3 1]

Now multiply both usng MATLAB’s ‘conv’ function

conv(y,f)
ans =
3 11 10 28 /0 23

which is equivalent to,

g = 3x + 11x" + 10X’ + 28x" + 70X + 23
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Virginia
Roots of Polynomials w Tech

Take the polynomial,

g = 3x + 11x" + 10X’ + 28x" + 70X + 23

To find the roots we use the ‘ roots command,

roots(Q)

ans =
0.7458 + 1.7309i
0.7458 - 1.7309i
-2.6180
-2.1582
-0.3820
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Virginia

Polynomial Evaluation mm

Sometimes we would like to evaluate polynomials at
particular points. Suppose that we want to find the value
of,

g = 33X+ 11X+ 10X’ + 28x" + 70x + 23
at point x=1.4. Use the ‘polyval’ function in MATLAB.

polyval(g,1.4)
ans =
261.7123
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Virginia
Deconvoluting Polynomials (J)Tech

Suppose we want to divide,
g = 33X+ 11X + 10X’ + 28x" + 70x + 23

by polynomia f = X*+ 3Xx+ 1 (both have been
defined)

deconv(g,f)
ans =
3 2 1 23

Thisisthe same as polynomial y previously defined.
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Virginia

Curve Fitting with Polynomials m'léch

Suppose the following datais collected in alaboratory
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x=[1 2 3 4 5 6 7 8 9 10
y=[1 4 10 16 25 39 49 64 83 100]
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Virginia
Curve Fitting with Polynomials mléfh

Use the ‘polyfit’ function to approximate the observed
behavior. In this case lets try a second degree polynomial.

d=polyfit(x,y,2)
d=
0.9659 0.4477 -0.5500

Suppose we want to evaluate values from this resulting
polynomial and compare with the original (x,y) values.
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Curve Fitting with Polynomials
Create a new vector (xnew) with values to be evaluated

xnew = 1:1:10;

»S = polyval (d,xnew)

ans =

0.8636 4.2091 9.4864 16.6955 25.8364 36.9091

49.9136 64.8500 81.7182
100.5182

Plot the original (Xx,y) versus (Xxnew,s)

Virginia

W'léch
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Virginia

Curve Fitting with Polynomials mﬁfh

plot(x,y,xnew,s,'+"):xlabel ('Force’);ylabel (‘A ccel eration’)
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Virginia
Interpolation in MATLAB (J)Tech

Several interpolation functions exist to facilitate data
handling.

Suppose the following data represent temperatures
measured in a standard atmosphere as a function of
atitude. Altitude (h) in km and temperature (t) in degrees
Kelvin.

10 11 12]

9
68.7 262.2 255.7 249.2 242.7
236.2 229.7 223.2 216.7]

h=[0 12345678
t=[288.2 281.7 275.2 2

J
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Virginia
Interpolation in MATLAB lech

The following plot represents the observed behavior,
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Virginia

Interpolation in MATLAB (J)Tech

Suppose we want to include the temperature datain a
program and want to evaluate the temperature in Denver
(1.58 km above mean sea level).

Define avariable called h_denver representing its altitude,

h denver =
1.5800
»a=interpl(h,t,n _denver)
a=
277.9300

J
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Virginia e
Numerical I ntegration W

Some background information is necessary to expose the
student to various techniques available to execute
numerical integration.

Several numerical methods to be reviewed:
. Standard numerical integration
. Numerica differentiation methods

. Differential equation solvers (document 4.2)

Matlab offers several procedures and built-in functions to
address these methods

J
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Standard Numerical I ntegration

Goal I1sto evaluate definite integrals of the form:

J = If(x)dx

M ethods

Several integration rules are possible:

. Trapezoidal

. Simpson’'srule

. Newton-Cotes

Virginia

W'léch

J
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Vﬂgmm’l&ch
Simpson’s Rule &

Approximation

f(X4)
f(Xo) / />< T(x2)

“ala N

J

Virginia Polytechnic Institute and State University 16 of 50



Simpson’s Rule

[f(x)dx = g(fo+ £+ f,) for each interval pair

b

[f(x)dx = g(f1+4f2+2f3+ L)

where N isthe number of pair intervals and

h = (b—a)/(n)

N 1s an even number of intervals.

Virginia

m'léch
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Virginia e
Composite Simpson’s Rule 3

In vector form thisruleis,

b

_h
If(x)dx = 3cf

where,

c=1142..241

and f = [f £, f, ... f..

J
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Virginia e
Composite Simpson’s Rule 3

Truncation error of thisevaluation is approximated by (Penny
and Lindfield),

L

E = (b—a)h'f"

where, a<t<b

J
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M atlab Built-in Functions

Matlab uses Newton-Cotes numerical techniques

Use higher degree polynomials (nth order)
[f(x)dx = %‘(f0+ 3f,+3f,+f.)

Newton-Cotes formula (n=3)

Truncation error is,% Y(t) wherea<t<b

Virginia

m'léch
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Virginia

M atlab Function ‘Quad’ e

guad(‘func’,a,b)

% ‘func’ is the function to be integrated
% aand b are the lower and upper limits of integration

. Uses a 2-pandl, adaptive recursive Newton Cotes
Integration method

. Good compromise in accuracy and speed

J
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Example of ‘Quad’ Function

% Matlab quad function use
%
t=clock; flops(0);

guadeval = quad('fsim',0,1.0) % invokes function

fprintf(‘Integral value %15.8f\n',quadeval)
fprintf(\ntime = %4.2f ...
seconds flops = %6.0f\n',etime(clock,t),flops);

Integral value  0.33333799
time=0.42seconds flops= 2969

Virginia

W'léch
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Sample Numerical Integration

@ VirginiaTech
Invent the Future
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@ VirginiaTech

Runoff in Civil Engineering Applications

Problem 1

A civil engineer is designing a rainstorm water management system for a shopping mall. During a severe thunderstorm, the
water runoff generated by the large parking lot at the shopping mall is given by the function:

runoff =k, + k, sin(t / k,)e"'*’

Where runoffis the runoff volume (cubic meters per second) generated by the parking lot, tis the time (in seconds) after the
thunderstorm starts and &, through k, are parameters of the runoff function.

Task 1

Create a Matlab function to calculate the runoff for a given value of time t. As part of the input variables to the function runoff,
include the four input parameters k1 through k4 for a 100 year storm with numerical values as follows:

k1 =50;
k2 =2;
k3 = 1500;

k4 = 800; All infrastructure generates runoff
(examples: parking lots, runways at airports,
large structures)
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@ VirginiaTech
Invent the Future

Function to Calculate Runoff

function Runoff rev.m function

% Function to estimate runoff volume at a shopping mall
function [runoff] = function_Runoff_rev(t)

global k1 k2 k3 k4

% runoff is the runoff volume (cubic meters per second)
% generated by the shopping mall into the ponding area

% t is the time (in seconds) after the thunderstorm starts

runoff = k1 * sin(t/k3) .* exp(-t/k4) + k2;
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Runoff Function

@ VirginiaTech
Invent the Future
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Figure 1. Runoff Function.
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i Script to Calculate the Area Under the
Curve

% Script to calculate the area under the runoff function
% Programmer: T. Trani

global k1 k2 k3 k4
% Calls function function_Runoff_rev
% areaUnderRunoff is the runoff volume (cubic meters per second)

% generated by the shopping mall into the ponding area
% t is the time (in seconds) after the thunderstorm starts

k1 = 50; % multiplicative parameter of the function
k2 = 2; % additive parameter of the function

k3 = 1500; % parameter of sinusoidal term

k4 = 800; % parameter of exponential term

tLast = 4500; % final time to do the calculation (seconds)

% Estimate the area under runoff function
areaUnderRunoff = quad(‘function_Runofi_rev',0,tLast);

disp(['Area under the Curve is ',num2str(areaUnderRunoff)])

@ VirginiaTech

Invent the Future
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@ VirginiaTech

Invent the Future

Calculations in Matlab

e Find the volume of water generated in the design
thunderstorm (say 100 year event)
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Figure 1. Runoff Function.

Area under the Curve is 25652.45 cubic meters

Task 4

Estimate the dimensions of a ponding volume needed to store all the runoff volume generated by the 100 storm event. State
dimensions of the ponding volume (base x width x height).

One estimate of the ponding volume would be 100 x 100 x 2.57 meters. This is equivalent to two Football stadiums with
a depth of 2.27 meters (8.5 feet).
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Trapezoidal Rule

Approximates the function f(x) using small trapezoids
spanning the range between a and b

The accuracy improves when the interval size (Ax) is
small

Z8 N
e

@ VirginiaTech
Invent the Future
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QVirg%niaTech

went the Future

Example: Runoff Calculation Using the
Trapezoidal Rule

Ooo~NOUTEAE WN -

10 -
11 -
12 -
13
14 -
15
16
17 -

% Script to generate values for runoff calculations
% A. Trani

% Given a vector of time values (t) in seconds
% Given four coefficients k1, k2, k3 and k4

% Calculate runoff (cu. meters/second) using the following equation:

% runoff =k2 * k1*sin(t/k3) .* exp(-t/k4) ;

Clear all Generates values of parameter t
E 2se - (time) from t=o to t=4500 seconds
t=0:1:4500; % time vector (seconds)

% Define constants for the problem
kl = 50;

Virginia Tech (A.A.Trani)
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g @ Virginialech
Example: Runoff Calculation Using the
Trapezoidal Rule (2)

18 - k2 = 2;

19- k3 =1500;

20 — k4 = 800;

21

22 — runoff =k1 *sin(t/k3) .* exp(-t/k4) + k2; % runoff (cu.meters/second)
23

24 — plot(t,runoff,'o-r’)

25—  xlabel('Time (seconds)’)

26—  ylabel('Runoff (cu.feet/second)’)  [EIERE=AZ] I[=5Ne) Mal]ale]ii
3273— grid from t=o to t=4500 seconds
29 % Use the trapezoidal function to evaluate the area under the curve

30

31-  volumeOfWater = trapz(t,runoff);

32

33— disp(['Volume of water accumulated is ', num2str(volumeOfWater)]);
34
. J
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g SVirginia Lc
Example: Runoff Calculation Using the
Trapezoidal Rule (3)
) Volume of water accumulated is
25,652.45 cubic meters
¢ Note: This calculation
2’| is very accurate because
i we defined a very small
interval ()
500 1000 1500 T2"(1)1(:) (seciﬁ(c)’(; ; 3000 3500 4000 4500
. J
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Virginia

Differential Eqn. Background @™

Matlab offers several procedures and built-in functions to
address these methods:

. Standard ODE solvers
. Stiff ODE solvers

J
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Virginia !
Differential Equations W

We want to solve dynamic systems of the form,

df _
= T

Use a Taylor series expansion,
, N
y(t,+h) = y(t) +y(t)h+y(P)7

2

The term y"(CD)hE is the reminder (includes all others)

J
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Virginia !
Euler Method ¢

Simplest of all methods of solving an ODE
Considers two terms in Taylor series expansion

Most innacurate of all

y(t, +h) = y(t;) +y(t;)h

In general for any n interval of solution,

V... = V,+hy forn =0,1,2,... error coh’

J
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Geometric Interpretation

y 1 |
Yo

Yo

y=f(x)

S

Error

'

A

Y1

Virginia

W'léch

J

Virginia Polytechnic Institute and State University

26 of 50



Runge Kutta Methods

Define various intermediate functions:

nf (L, Y.)
nf(t,+h/2,y,+k./2)

K, —

K, —

K —

K, =

V... = VY, + (K, + 2k, + 2k, + k,)/ 6 error ooh*

nf (t, +

nf (t, +

Virginia e
M atlab Functions i

N/ 2,Y,+K,/2)

N, Y, + K,)

J
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Virginia

M atlab Function ‘od€’ e

t,y] = ode23('func',tspan,y0); % low order method

t,y] = oded5('func',tspan,y0); % med. order method
[t,y] = odell3('func',tspan,y0); % var. order method

% ‘func’ is the function to be integrated

% tspan is a vector with lower and upper limits of
Integration

% yO istheinitial value of the state variables

J
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Virginia

g N , [ Tech
Matlab Function ‘odexxs
t,y] = ode23s(‘func',tspan,y0); % stiff low order
t,y] = oded5s('func',tspan,y0); % stiff med. order
[t,y] = 0dell13s('func',tspan,y0); % stiff var. order
% ‘func’ is the function to be integrated
% tspan is a vector with lower and upper limits of
Integration
% yO istheinitial value of the state variables
. y,
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Virginia !
What is a Stiff ODE? 3

Those whose rate variables display very rapid changes over
time

Many systems of differential equations display this behavior

. A fast rate vsa slow varying one

- A very fast rate of change

In most systems modeling and analysis stiff system do not
pose a problem.

J
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Virginia

Solution of Differential Equationsin MATLAB mrm

There are few steps needed to solve ODE in MATLAB:

1) Write the differential eguation(s) as a set of first order
ODEs

2) Perform necessary variable substitutions and write a
MATLAB function to compute the derivatives of the
state variables

This function returns the derivatives of every state of the
system

3) Use anyone of the MATLAB ODE solvers and invoke
the function

J
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Virginia

MATLAB Scripting Approach mm

The system is represented by ODE

Create two M files: a) amain file and b) afunction file

MATLAB Script MATLAB Script
T Function file
for Man File
- > .
| | function to be
invoke function eval uated
file

J
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Virginia
Sample Experiment lech

Suppose that we would like to decsribe the process of
cooling of water from near boiling point to room
temperature. The figure shows our observations.

100 ! ! ! ! ' ! '
QO -\ -+ -
SO N il
L=} . . . . . . .
@ \ . . . . . .
DOT0L N -
bt : : : ‘ ‘ ‘ ‘
= 3 3 3 3 3 3 3
EO0F N i
= ‘ ) : : ! ! !
= : : : : : : :
I B0 N 1
O [ TS 1
30 ; ; ; ; ; i ‘.
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Time (min)

J
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Virginia
First Law of Cooling ODE Wm

Observations:

. The temperature drops very quickly initially

. The temperature decay (rate of change) tapers as the
water and room temperatures get closer

- The temperature approaches to the room temperature as
time goes to infinity

Write down possible solutions or forms of the solution

J
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Virginia

Proposed M odel mm

Suppose the model is of the form,

ar _ B
pri H(T-T,)

where:
H isaconstant of proportionality in the experiment
T isthe temperature of the water (deg C)

T, isthe room temperature (deg C)

J
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Step 1in ODE Solution

1) Write the differential equation(s) as a set of first order
ODEs

Thisisaready in place since the system has only one
ODE to start

ar _ B
pri H(T-T.)

Virginia

m'léch

J
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Virginia
Step 2 1in ODE Solution mlﬂ{h

2) Perform necessary variable substitutions and write a
MATLAB function to compute the derivatives of the
state variables

Thisfunction returns the derivatives of every state of the
system

In this case we write two M-files;

1) oneinitializes the problem (state variable definition at
time zero)

2) one function to computer the derivative of T
(temperature)

J
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Viginia
MATLAB Equations (Main Routine) [J) et

% Define Initial Conditions of the Problem
global TaH % define global variables

To=100; % Toistheinitial temperature of the water
to=0.0; %toistheinitia time to solve this equation
tf =40; % tf isthefina time (min)

Tspan = [to tf];% Spanning time for the ODE solution

% Define T ambient (Ta) and cooling constant (H)
Ta=30; % ambient temperature (deg C)
H =0.10; % Cooling constant (1/min)

J
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Virginia
Step 3in ODE Solution (J)Tech

3) Invoke the ODE solver in MATLAB

% Use Runge-Kutta 3rd order solver
[t,T] = ode23('ftem’, Tspan, To);

% Plot the results of the numerical integration procedure

plot(t,T)

xlabel ("Time (min)")

ylabel ("Temperature (deg C)")
grid

J
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Virginia

MATLAB Function ‘ftem.m (J)Tech

Thisfunction estimates the value of the rate of change of
the ODE.

% First Order Differential Equation Function

function tprime = ftem(t,T)
global TaH
tprime=-H* (T - Ta);

Note: global variables are “shared” by all functionsin the
workspace

J

Virginia Polytechnic Institute and State University 40 of 50



Virginia
Use of the Hold Command mm

Here we use the hold command to plot two solutions to
the first order differential equation shown previously

100 T T T T | T | T T
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(o) ‘ ! : : ! ! : : !
@ \ ! : : ! ! : : !
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Example: Use of ODE Solvers
Train Kinematics
2nd Order Dynamic System

@ VirginiaTech
Invent the Future

Virginia Tech (A.A.Trani)
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@ VirginiaTech
Invent the Future

Vehicle Kinematics

® An engineer collects data during the certification of
the new high-speed train to be introduced in the
Northeast Corridor in the United States

® The data collected records train acceleration (a) vs.
velocity (V)

® The data is presented in the table

Train Velocity (m/s) Maximum Train Acceleration

(m/s?)

0.00 2.1
20 1.56
30 1.30
40 1.06
50 0.76
60 0.51
80 0.00

Virginia Tech (A.A.Trani) 41b



Vehicle Kinematics (2)

Use a Matlab script to find the best first-order polynomial
that fits the acceleration vs. train speed data (i.e., use the

“polyfit” command)

The resulting polynomial will be of the form:

éK=A+BV

dt

where A, B and C are the polynomial coefficients found and
V is the train speed.

Train Velocity (m/s)

0.00

Maximum Train Acceleration (m/s?)

Equation (1)

2.1

20

1.56

30

1.30

40

1.06

50

0.76

60

0.51

80

0.00

@ VirginiaTech
Invent the Future

Virginia Tech (A.A.Trani)
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Vehicle Kinematics (3)
Matlab Script to Find Best Polynomial

% Script to estimate best curve fit for two vectors
clear

icT Trani d_V — A + BV

% Task 1 t Train Velocity (m/s) Maximum Train Acceleration
(WER]
% Define two vectors for velocity and acceleration
0.00 21
velocity =[0 20 3040 50 60 80]; % velocity in m/s 20 1 56
acceleration =[2.1 1.56 1.30 1.06 0.76 0.51 0.00]; % accceleration (m/s-s) i
< 30 1.30
% Do a basic polynomial fit ” T o8
coefficients = polyfit(velocity,acceleration, I); % Fits a first-order polynomial 50 0.76
% Evaluate the polyn found for the range of velocities of the train in 60 0.51
% the table 80 0.00

velNew = min(velocity):1:max(velocity); fine a new velocity vector to evaluate the polynomial
accelerationFromPolyFit = polyval(coefficients,veINEW evaluate the polynomial using the coefficients found

% Make a plot and compare

% Create a label for the plot with the values of coefficidents found

Calculates coefficients

labelPlot = horzcat('Acceleration = ', num2str(coefficients(1)), ' * VelocityA2 + ', ...
num2str(coefficients(2)), ' * Velocity + ', num2str(coefficients(3)));

figure
plot(velocity,acceleration,'or’,veINew,accelerationFromPolyFit,'b--")
xlabel("Train Velocity (m/s)','fontsize’,20)

ylabel("Train Acceleration (m/s-s)",'fontsize’,20)

title(labelPlot)

grid

Virginia Tech (A.A.Trani) 41d



@ VirginiaTech
Invent the Future

Regression Coefficients for
Acceleration Function

d—V=A+BV

dt

e B=-0.0268; % coefficient of acceleration function (1st power)

o A=20997; % coefficient of acceleration function (constant)

Virginia Tech (A.A.Trani) 4le



VirginiaTech
m g}nrvlem the Future

Other Tasks

Using the Matlab Ordinary Differential Equation solver ODE45,
to solve numerically the differential equation (1) as a function of
time

This problem is similar to the Water Cooling problem discussed
in class except that the differential equation is a little more
complex

Use as initial conditions zero for the train speed and solve
numerically the speed of the train for 200 seconds

Plot the velocity profile of the high-speed train as a function of
time. How fast is the train going after 200 seconds?

Virginia Tech (A.A.Trani) 41f



ﬂ};qugmlaTech

More Tasks (2)

Add code to the script and function containing the differential equation created
in Task 2 to calculate the distance traveled by the train. Recall that distance (S)
can be obtained from the first order differential equation:

dS :
— =V Equation (2)

The solution to this problem requires solving two first order equations (1-2).
Refer to the mass-spring damper system discussed in class to help you setup
these equations. You can see how these two equations are coupled as follows:

X, = d—V—A+Bx1
dt

X, =X —ﬁ

2 1 dt

where: X; be the speed of the train, X, be the position of the train and and
be the derivatives of speed and position

Virginia Tech (A.A.Trani) 4l1g



Matlab Main File to Solve Problem

% Main file to solve two differential equations of motion
% Solution to a set of dynamic equations of the form:

%

% define the following state equations

%

% x(1) = speed (m/s)

% x(2) = position (m)

% xdot(1) = A + B *x(1) + C * x(1) .A2; % acceleration of train
% xdot(2) = x(1); % velocity of train

%

% subject to initial conditions:

%

% x (t=0) = xo

%

% where:

global AB C

% Define Initial Conditions of the Problem

xo = [0 0]; % xo0 are the initial velocity and distance traveled
to = 0.0; % to is the initial time to solve this equation
tf = 200; % tf is the final time

% define the coefficients of the acceleration function (A, B, and C)

% Previously obtained as: coefficients = 0.0000 -0.0268 2.0997

% from highest order to lowest (A associated with x(1) A2, B with x(1) and
% C if the constant term)

A = 0.0; % coefficient of acceleration function (2nd power)

B =-0.0268; % coefficient of acceleration function (1st power)

C =2.0997; % coefficient of acceleration function (constant)

tspan =[to tf];

[t,x] = ode45|('trainDynamics',tspan,xo); % call ODE solver

@ VirginiaTech
Invent the Future

% Plot the results of the numerical integration procedure

figure

plot(t,x(:,1))

xlabel('Time (seconds)’,'fontsize’,20)

ylabel('Velocity Profile of the Train (m/s)','fontsize',20)
grid

figure

plot(t,x(:,2))

xlabel('Time (seconds)’,'fontsize',20)
ylabel('Distance Traveled (m)','fontsize’,20)
grid

Virginia Tech (A.A.Trani)
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Matlab Function File (trainDynamics.m)

% Two first-order DEQ to solve two equations of motion for the] train
function xdot = trainDynamics(t,x)
global AB C

% define the rate equations
%
% x(1) = speed (m/s)
% X(2) = position (m)

xdot(l) = A * x(1) .A2 + B *x(1) + C;
xdot(2) = x(1);

xdot = xdot’;

Note: | setup the problem for a quadratic model
but the coefficient of x? is zero.The acceleration is
linear with speed.

@ VirginiaTech
Invent the Future
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Invent the Future

o

Velocity Profile of the Train (m/s)
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Highway Maintenance Model
Example of Higher-Order ODE
Conserved System

@ VirginiaTech
Invent the Future
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Highway Maintenance

® Departments of Transportation are
responsible for keeping up many of
the roads and highways that we use
every day

® Maintenance requires substantial
amounts of State money

® Money can be invested in two types
of maintenance actions:

® Ordinary - fix cracks, rutting

® Replacement - repaving
operations

Virginia Tech (A.A.Trani) 41
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Highways According to their Condition

Good Highways
(PSH)

Replacement
maintenace 4 years

Deficient Highways
(PDFH)

Ordinary
maintenace

4 years
Deteriorated Highways

(PDTH)

Virginia Tech (A.A.Trani) 41m



Virginia

Higher-Order Dynamic Systems mm

Higher order system can be solved in asimular way using
MATLAB recognizing that array variables that contain
more than one state variable

- The following highway maintenance example illustrates
this (adapted from Drew, 1997)

- The highway maintenance example solves three coupled
ODEsto predict the state of the State highways system

- The model assumes investments in ordinary
vs.replacement maintenance actions to predict the
number of lane-miles of highway in three possible states
over time (sufficient,deficient and deteriorating
highways)

J
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Highway M aintenance Model (main file) Wmh

% Highway Maintenance Model

global HME FEOM OMC FEMR MRC HDETT HAT
% Define constants of the problem

HME =5E7; % Hwy maintenance expenditure ($/yr)
FEOM = 0.5; % Fract. of expenditures to ordinary

maint (%)

OMC = 5Eb5; % IO)rdi nary maintenance cost($/lane-
mile

MRC = 2ES6; ;%) M;’;li ntenance replacement action ($/
ami

FEMR =0.5; % Frac of expenditures for maint.
replacement (%)

HAT =4, % Hwy aging time (yr)

HDETT = 8§; % Hwy deterioration time (yr)

J
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Highway M aintenance Model (main file) mmh

% Define Initial Conditions of the Problem

yN =[200 200 0];% yN defines intial conditionsfor...

state variables

to=0.0; % to 1stheinitial time to solvethis...
equation (yr)

tf = 10.0; % tf isthe final time (yr)

tspan = [to tf]

% Invoke the ordinary differential equation solver
[t,y] = ode23('fhwy3 rev',tspan,yN);

J
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Highway M aintenance Model (main file)

% Plot the results of the numerical integration procedure
subplot(3,1,1) % plots PSH in the top half of the...
pPage

plot(t,y(:,1)) % plots all elements of the first...
column of y

xlabel ("Time (years)')
ylabel ('PSH (la-mi)");
grid

J
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Highway M aintenance M odel m Tech

subplot(3,1,2) % plots| in the bottom half of the page
plot(t,y(:,2)) % plots al elements of the second

column of y

xlabel ("Time (years)')

ylabel('PDTH (la-mi)’);

grid

subplot(3,1,3) % plots PDTH in the bottom third of
the page

plot(t,y(:,3)) 0/]9 plotsall elements of thefirst column
oy

xlabel ("Time (years)')

ylabel('"PDFH (la-mi)’)

grid

J
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Virginia
Function File (fhwy3 rev) mléch

function yprime = fhwy3 rev(t,y)
global HME FEOM OMC FEMR MRC HDETT HAT

% define rate eguation(s)
HD =y(2) / HDETT, % Hwy deteriorating (lane-mi/yr)
HA =y(1) / HAT; % Hwy aging (lane-mi/yr)

HOM = HME * (FEOM / OMCQO);
% Highway with ordinary maintenance (lane-mi/yr)

HMR = HME * (FEMR/ MRC);
% Highway with maint replacement (lane-mi/yr)

J
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Function File (fhwy3 rev) mm

% Define the rate eguations (3 rate variables representing
PSH, PDFH and PDTH)

%

% PSH - Physically sufficient highways (y1)
% PDFH - Physically defficient highways
% PDTH - Physically deteriorated highways

% Model equivalencies for state variables

%Yyl = PSH
% Yy2 = PDFH
%Yy3=PDTH

J
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Function File (tfhwy3 rev)
yprime(1l) = HOM + HMR - HA;
% Rate of change of PSH (la-mi/yr)

yprime(2) = HA - HD - HOM ;
% Rate of change of PDFH (la-mi/yr)

yprime(3) = HD - HMR;
% Rate of change of PDTH (la-mi/yr)

yprime=yprime'; % returns a column vector to main file

Virginia

W'léch

J
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Spring-Mass-Damper (SMD) System

® Spring-mass-damper systems have many
applications in mechanical and civil
engineering systems

- f(t
Building X
F(t)
Mass X
b, m
by
Datum Point State variables
Velocity of mass (x dot)
Displacement of mass (x)
Kk
K -
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Equations to Describe the SMD System

spring

/] —
Y1 =MW .

 F0t  k b
Yy = YI— =0

m m m
Datum Point State variables
Velocity of mass (x dot)

F (t) EXternaI fOI”CG (N) Displacement of mass (x)

Y1 SMD displacement (m)
Yo SMD speed (m/s)

m  Mass (kilograms)
b  Damper constant (N / (m/s))

k  Spring constant (N / m)
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Invent the Future

Matlab Implementation of the SMD System

% Main file to estimate the speed and distance profiles of
% a mass-spring-damper system

clear
close all
clc

% Solution to a set of two ODE equations of the form:

Main File

%o % Two first-order ODESs to solve the mass-spring-damper
% ydot(1) = y(2); function yprime = fy1(t,y)

% ydot(2) = F(t)/m - k/m y(1) - b/m y(2)

% global m b k

% subiject to initial conditions:

% % Define the forcing function, f(t), here

%y (t=0) = yo F =10000;
%

% Define the equations of state
% y(1) = position (m)
% y(2) = speed (m/s)

yprime(1) = y(2);
Function File yprime(2) = F/m - k/m * y(1) - b/m * y(2);

With ODE equations yprime = yprime";

% Units are Newtons

@ VirginiaTech
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Numerical Solution of the SMD System

% Define Initial Conditions of the Problem

yo = [0 0]; % yo are the initial displacement and velocity
to = 0.0; % to is the initial time to solve this equation

tf = 15.0; % tf is the final time

% define mand b . .

‘ Main File
m = 3000; % mass (kg)

b = 2000; % damper constant (N / (m/s))

k =40000; % spring constant (N/m)

tspan =[to tf];

[t,y] = ode23('fy1',tspan,yo); % call ODE solver

@ VirginiaTech

I

nvent the Future

function yprime = fy1(t,y)

Function File

% Two first-order ODEs to solve the mass-spring-damper system

global m b k With ODE equations
% Define the forcing function, f(t), here
F = 10000; % Units are Newtons
/
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Numerical Solution of the SMD System

@ VirginiaTech

Invent the Future
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Speed (m/s)

08 Speed Response of a Spring-Mass-Damper System
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Perform Changes to Damper Constant System
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