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Recall - Linear Programming

 

General Formulation

 

Maximize 

subject to:  for 

  for 
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Linear Programming

 

  Objective Function (OF) 

   Functional Constraints (

 

m

 

 of them)

  Nonnegativity Conditions (

 

n

 

 of these)

 are decision variables to be optimized (min or max)

 are costs associated with each decision variable
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Linear Programming

 

 are the coefficients of the functional constraints

 are the amounts of the resources available (RHS)

aij

bi
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LP Example (Construction)

 

During the construction of an off-shore airport in Japan the 
main contractor used two types of cargo barges to transport 
materials from a fill collection site to the artificial island 
built to accommodate the airport.

The types of cargo vessels have different cargo capacities 
and crew member requirements as shown in the table: 

 

Vessel Type Capacity (m-
ton) Crew required Number 

available

 

Fuji 300 3 40

Haneda 500 2 60
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Osaka Bay Model

 

According to company records there are 180 crew members 
in the payroll and all crew members are trained to either 
manage the “Haneda” or “Fuji” vessels. 

Osaka

Airport
Kansai

Bridge
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Osaka Bay Model

 

Mathematical Formulation

 

Maximize 

subject to: 

 

 and 

Note: let  and  be the no. “Fuji” and “Haneda” 
vessels

Z 300x1 500x2+=

3x1 2x2+ 180≤

x1 40≤

x2 60≤

x1 0≥ x2 0≥

x1 x2
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Osaka Bay Problem (Graphical Solution)
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Osaka Bay Problem (Graphical Solution)
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Solution Using Excel Solver

• Solver is a Generalized Reduced Gradient (GRG2) 
nonlinear optimization code

• Developed by Leon Lasdon (UT Austin) and Allan 
Waren (Cleveland State University)

• Optimization in Excel uses the Solver add-in.

• Solver allows for one function to be minimized, 
maximized, or set equal to a specific value.

• Convergence criteria (convergence), integer constraint 
criteria (tolerance), and are accessible through the 
OPTIONS button.
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Excel Solver

• Excel can solve simultaneous linear equations using 
matrix functions

• Excel can solve one nonlinear equation using Goal 
Seek or Solver

• Excel does not have direct capabilities of solving n 
multiple nonlinear equations in n unknowns, but 
sometimes the problem can be rearranged as a 
minimization function
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Osaka Bay Problem in Excel
Optimization Problem for Osaka Bay

Decision Variables

x1 20 Number of Ships Type 1
x2 60 Number of Ships Type 2

Objective Function

300 x1 + 500 x2 36000

Constraint Equations
Formula

3 x1 + 2 x2 <= 180 180 <= 180
x1 <= 40 20 <= 40
x2 <= 60 60 <= 60
x1 >= 0 20 >= 0
x2 >= 0 60 >= 0

Objective function
Stuff to be solved
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Osaka Bay Problem in Excel
Optimization Problem for Osaka Bay

Decision Variables

x1 20 Number of Ships Type 1
x2 60 Number of Ships Type 2

Objective Function

300 x1 + 500 x2 36000

Constraint Equations
Formula

3 x1 + 2 x2 <= 180 180 <= 180
x1 <= 40 20 <= 40
x2 <= 60 60 <= 60
x1 >= 0 20 >= 0
x2 >= 0 60 >= 0

Decision variables
(what your control)
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Osaka Bay Problem in Excel
Optimization Problem for Osaka Bay

Decision Variables

x1 20 Number of Ships Type 1
x2 60 Number of Ships Type 2

Objective Function

300 x1 + 500 x2 36000

Constraint Equations
Formula

3 x1 + 2 x2 <= 180 180 <= 180
x1 <= 40 20 <= 40
x2 <= 60 60 <= 60
x1 >= 0 20 >= 0
x2 >= 0 60 >= 0

Constraint equations
(limits to the problem)
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Solver Panel in Excel
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Solver Panel in Excel
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Solver Panel in Excel
Objective function
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Solver Panel in Excel
Operation to execute
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Solver Panel in Excel
Decision variables



20 of 58Virginia Tech

Solver Panel in Excel
Constraint equations
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Solver Options Panel Excel
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Excel Solver Limits Report

• Provides information about the limits of decision 
variables
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Excel Solver Sensitivity Report

• Provides information about shadow prices of decision 
variables
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Unconstrained Optimization 
Problems

• Common in engineering applications

• Can be solved using Excel solver as well

• The idea is to write an equation (linear or nonlinear) 
and then use solver to iterate the variable (or variables) 
to solve the problem
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Simple One Dimensional 
Unconstrained Optimization

• Given the quadratic equation

• Find the minima of the equation for all values of x

Solution:

• Lets try the Excel Solver  

y 2x2 20x– 18+=
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Plot of Equation to be Solved

Simple Quadratic Formula
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Excel Solver Procedure

Guess value of x
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Excel Solver Panel

Minimization for cell B6
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Excel Solver Procedure

Minimum of y
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Finding the Roots of y Using 
Excel Solver

• Easily change the minimimzation problem into a root 
finder by changing the character of the operation in 
Excel Solver

Root finder of y
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Root Finder for y
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Example for Class Practice

• Minimization example (mixing problem)

• Airline fleet assignment problem
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Minimization LP Example

A construction site requires a minimum of 10,000 cu. 
meters of sand and gravel mixture. The mixture must 
contain no less than 5,000 cu. meters of sand and no more 
than 6,000 cu. meters of gravel.

Materials may be obtained from two sites: 30% of sand and 
70% gravel from site 1 at a delivery cost of $5.00 per cu. 
meter and 60% sand and 40% gravel from site 2 at a 
delivery cost of $7.00 per cu. meter.

a) Formulate the problem as a Linear Programming problem

b) Solve using Excel Solver
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Application to Water Pollution
River ARiver B

River C

Lake

City

Airport



35 of 58Virginia Tech

Water Pollution Management

The following are pollution loadings due to five sources:

Note: Pollution removal schemes vary in cost dramatically.

Source Pollution Loading 
(kg/yr)

Unit Cost of Removal 
($/kg)

River A 18,868 1.2

River B 20,816 1.0

River C 37,072 0.8

Airport 28,200 2.2

City 12,650 123.3
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Water Pollution Management

It is desired to reduce the total pollution discharge to the 
lake to 70,000 kg/yr. Therefore the target pollution 
reduction is 117,606-70,000 = 47,606 kg/yr.

Solution:

Let x1,x2, x3, x4, x5  be the pollution reduction values 
expected in (kg/yr). The costs of unit reduction of pollution 
are given in the previous table.

The total pollution reduction from all sources should be at 
least equal to the target reduction of 47,606 kg.
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LP Applications - Water Pollution 
Management

The reductions for each source cannot be greater than the 
present pollution levels. Mathematically,

 constraint for River A

 constraint for River B

 constraint for River C

 airport constraint

 city constraint

x1 18868≤

x2 20816≤

x3 37072≤

x4 28200≤

x5 12650≤
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Water Pollution Management

The reductions at each source should also be non negative.

Using this information we characterize the problem as 
follows:

Min 

s.t. 

z 1.2x1 1.0x2 0.8x3 2.2x4 123.3x5+ + + +=

x1 x2 x3 x4 x5+ + + + 47606≥

x1 18868≤

x2 20816≤

x3 37072≤
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 and x4 28200≤ x5 12650≤
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Water Resource Management

Rewrite the objective function as follows:

Max 

st.  

z– 1.2x1 1.0x2 0.8x3 2.2x4 123.3x5 Mx12+ + + + + +

x1 x2 x3 x4 x5 x6– x12+ + + + + 47606=

x1 x7+ 18868=

x2 x8+ 20816=

x3 x9+ 37072=

x4 x10+ 28200=

x5 x11+ 12650=
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Solution in Matlab (Input File)

% Example: Enter the data:
   minmax=1;% minimizing problem
   a=[1 1 1 1 1 -1 0 0 0 0 0 1
      1 0 0 0 0 0 1 0 0 0 0 0
      0 1 0 0 0 0 0 1 0 0 0 0
      0 0 1 0 0 0 0 0 1 0 0 0
      0 0 0 1 0 0 0 0 0 1 0 0
      0 0 0 0 1 0 0 0 0 0 1 0]
   b=[47606 18868 20816 37072 28200 12650]'
   c=[-1.2 -1. -.8 -2.2 -123.3 0 0 0 0 0 0 -999]
   bas=[12 7 8 9 10 11]
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Try it in Excel Solver!
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Airline Scheduling Problem

A small airline would like to use mathematical 
programming to schedule its flights to maximize profit.

The following map shows the city pairs to be operated.

Cincinnati

Roanoke

Atlanta

New York

λ21 = 600 pax/day

1

2

4

3

λ23 = 450 pax/day

λ24 = 760 pax/day

λij = Demand from
i to j

d12 = 260 nm

d23 = 375 nm
λ12 = 450 pax/day

λ42 = 700 pax/day

λ32 = 500 pax/day

d24 = 310 nm
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Airline Scheduling Problem

The airline has decided to purchase two types of aircraft 
to satisfy its needs: 1) the Embraer 145, a 45-seat 
regional jet, and 2) the Avro RJ-100, a four-engine 100 
seater aircraft (see the following figure). 

EMB-145

Avro RJ-100



45 of 58Virginia Tech

Aircraft Characteristics

The table has pertinent characteristics of these aircraft

Aircraft EMB-145 Avro RJ-100

Seating capacity - 50 100

Block speed (knots) - 400 425

Operating cost ($/hr) - ck 1,850 3,800

Maximum aircraft utiliza-
tion (hr/day)a - Uk

a. The aircraft utilization represents the maximum number of hours an aircraft is in actual use with the engines running (in 
airline parlance this is the sum of all daily block times). Turnaround times at the airport are not part of the utilization 
variable as defined here.

13.0 12.0

nk

vk
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Nomenclature

Define the following sets of decision variables:

No. of acft. of type k in fleet = Ak

No. flights assigned from i to j using aircraft of type k = Nijk

Minimum flight frequency between i and j = (Nij)min
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Based on expected load factors, the tentative fares 
between origin and destination pairs are indicated in 
the following table.

City pair designator Origin-
Destination

Average one-
way fare
($/seat)

ROA-CVG Roanoke to 
Cincinnati

175.00

ROA-LGA Roanoke to La 
Guardia

230.00

ROA-ATL Roanoke to 
Atlanta

200.00
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Problem # 1  Formulation

1) Write a mathematical programming formulation to 
solve the ASP-1 Problem with the following constraints:

Maximize Profit 

subject to: 

• aircraft availability constraint

• demand fulfillment constraint

• minimum frequency constraint
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Problem # 2 ASP-1 Solution

1) Solve problem ASP-1 under the following numerical 
assumptions:

a) Maximize profit solving for the fleet size and frequency 
assignment without a minimum frequency constraint. Find 
the number of aircraft of each type and the number of flights 
between each origin-destination pair to satisfy the two basic 
constraints (demand and supply constraints).

b) Repeat part (a) if the minimum number of flights in the 
arc ROA-ATL is 8 per day (8 more from ATL-ROA) to 
establish a shuttle system between these city pairs.
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Vehicle Scheduling Problem

Formulation of the problem.

Maximize Profit 

subject to: (possible types of constraints)

a) aircraft availability constraint

b) demand fulfillment constraint

c) Minimum frequency constraint

d) Landing restriction constraint
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Vehicle Scheduling Problem

Profit Function

P = Revenue - Cost

Revenue Function

Revenue = 

where:  is the demand from i to j (daily demand)

 is the average fare flying from i to j

λijfij

i j,( )

∑

λij

fij
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Vehicle Scheduling Problem

Cost function

let  be the flight frequency from i to j using aircraft 
type k

let  be the total cost per flight from i to j using 
aircraft k

Cost = 

then the profit function becomes,

Nijk

Cijk

Nijk

k

∑ Cijk

i j,( )

∑
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Profit = λijfij

i j,
∑ Nijk

k
∑ Cijk

i j,
∑–
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Vehicle Scheduling Problem

Demand fulfillment constraint

Supply of seats offered > Demand for service

 for all  city pairs or alternatively

 for all  city pairs

lf is the load factor desired in the operation (0.8-0.85)

Note: airlines actually overbook flights so they usually 
factor a target load factor in their schedules to account 
for some slack 

nkNijk

k
∑ λij≥ i j,( )

lf( )nkNijk

k
∑ λij≥ i j,( )
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Vehicle Scheduling Problem

Aircraft availability constraint

(block time) (no. of flights) < (utilization)(no. of 
aircraft)

 

one constraint equation for every  aircraft type

tijkNijk UkAk≤
i j,( )
∑

k
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Vehicle Scheduling Problem

Minimum frequency constraint

No. of flights between i and j > Minimum number  of 
desired flights

 for all  city pairs

Note: Airlines use this strategy to gain market share in 
highly traveled markets

 

Nijk
k
∑ Nij( )

min
≥ i j,( )
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Vehicle Scheduling Problem

Maximize Profit = 

subject to 

 for all  city pairs

 for every  aircraft type

 for all  city pairs

λijfij

i j,
∑ Nijk

k
∑ Cijk

i j,
∑–

nkNijk

k
∑ λij≥ i j,( )

tijkNijk UkAk≤
i j,( )
∑ k

Nijk
k
∑ Nij( )

min
≥ i j,( )


