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Virginia
Material Presented in this Section [ Tech

Topics

Queueing Models

+ Background

+ Analytic solutions for various disciplines
+ Applications to infrastructure planning

The importance of queueing models 1n infrastructure
planning and design cannot be overstated.

Queueing models offer a simplified way to analyze
critical areas inside an airport terminal to evaluate levels
of service and operational performance.
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Virginia
Principles of Queueing Theory [ Tech

Historically starts with the work of A.K. Erlang while
estimating queues for telephone systems
Applications are very numerous:
- Transportation planning (vehicle delays in networks)
- Public health facility design (emergency rooms)
- Commerce and industry (waiting line analysis)

- Communications infrastructure (switches and lines)
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Virginia h
Elements of a Queue ILIEES

a) Input Source
b) Queue

c¢) Service facility

Arriving Entities
Queue . Served Entities
© o—fo00 | fmie |—-00C
O
Input Source Queueing System
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Specification of a Queue

- Size of input source

- Input function

- Queue discipline

- Service discipline

- Service facility configuration

- Output function (distribution of service times)

Sample queue disciplines
- FIFO - first 1n, first out

- Time-based disciplines

- Priority discipline

Vlrgmmlil]&]l Tech
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Virginia
What Does a Queue Represent? [ Tech

Queues represent the state of a system such as the number
of people inside an airport terminal, the number of trucks
waiting to be loaded at a construction site, the number of
ships waiting to be unloaded in a dock, the number of
aircraft holding in an imaginary racetrack flight pattern
near an airport facility, etc.

The important feature seems to be that the analysis 1s
common to many realistic situations where a flows of
traffic (including pedestrians movind inside airport
terminals) can be described in terms of either continuous
flows or discrete events.
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Virginia h
Types of Queues IR

Deterministic queues - Values of arrival funtion are not
random variables (continuous flow) but do vary over time.

« Example of this process is the hydrodynamic
approximation of pedestrian flows inside airport terminals

* “Bottleneck™ analysis 1n transportation processes employs
this technique

Stochastic queues - deal with random variables for
arrival and service time functions.

* Queues are defined by probabilistic metrics such as the
expected number of entities in the system, probability of n
entities in the system and so on
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Virginia

Generalized Time Behavior of a Queue

State
of System

Steady-State

Transient Behavior

| >
Time (hrs)

The state of the system goes through two well defined
regions of behavior: a) transient and b) steady-state

[ Tech
@

Virginia Polytechnic Institute and State University

8 of 95



Virginia h
Deterministic Queues i 1ec

Deterministic Queues are analogous to a continuous flow
of entities passing over a point over time. As Morlok
[Morlok, 1976] points out this type of analysis 1s usually
carried out when the number of entities to be simulated 1s
large as this will ensure a better match between the
resulting cumulative stepped line representing the state of
the system and the continuous approximation line

The figure below depicts graphically a deterministic queue
characterized by a region where demand exceeds supply
for a period of time
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Virginia

Deterministic Queues (Discrete Case) JTech
Supply (w)
N . Demand (\)
Cumulative Flow  Cumulative
Demand
Cumulative Supply
el At Time
J
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Virginia h
Deterministic Queues (Parameters) ) Tec

a) The queue length, L., (1.e., state of the system)

corresponds to the maximum ordinate distance between
the cumulative demand and supply curves

b) The waiting time, w,, denoted by the horizontal

distance between the two cumulative curves in the
diagram 1s the individual waiting time of an entity

arriving to the queue at time t,

c¢) The total delay 1s the area under bounded by these two
curves

d) The average delay time 1s the quotient of the total delay
and the number of entities processed

J
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Virginia

Deterministic Queues

¢) The average queue length 1s the quotient of the total
delay and the time span of the delay (i.e., the time
difference between the end and start of the delay)

Assumptions

Demand and supply curves are derived derived from
known flow rate functions (» and w) which of course are
functions of time.

The diagrams shown represent a simplified scenario
arising in many practical situations such as those
encountered in traffic engineering (i.e., bottleneck
analysis).
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Fundamental Equations
Deterministic Queueing

dL
= A1) — ()

A(t) = arrival rate (entities/time unit)
u(t) = service rate (entities/time unit)
A(t) = demand function
u(t) = service function
In finite difference form we can solve the equation
for L, numerically
L =L, +(d—L)At
dt
L =L, +(At)—u))As

@ VirginiaTech
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Virginia
Example # 1 : Freeway Bottleneck Analysis [ Tech

A four lane freeway has a total directional demand of
4,000 veh/hr during the morning peak period. One day an
accident occurs at the freeway that blocks the right-hand
side lane for 30 minutes (at time t=1.0 hours). The
capacity per lane 1s 2,200 veh/hr.

a) Find the maximum number of cars queued.

b) Find the average delay imposed to all cars during the
queue.

A classical example of a deterministic queue
You studied such examples in CEE 3604 - Intro to
Transportation Engineering

J
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VirginiaTech
m g}nrvlem the Future

Mathematical Equations to Work the
Problem

A(t)= 4000 V t

4400 1 t < 1.0 hrs

u(t)=| 2200 if 1 <=t < 1.5 hrs
4400 if t> 1.5 hrs

dL First-order differential equation
- MOTHD to be solved

In finite difference form we can solve the equation

for L, numerically
L=L_,+ (d—LjAt
dt
L =L_,+(A@F)—u@)At
J/
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Hand Calculations and Solution

® |ntegrate the values of demand and capacity in a

piecewise fashion (over time)

® For example for interval 0 <t <|.0 hrs

1.0
|, Aar = 40001 +C
C, =0 from initial conditions (at t=0 queue 1s zero)

[ utydr = 44001 + C,

C, =0 from initial conditions (at t=0 queue is zero)

@ VirginiaTech
Invent the Future
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Hand Calculations and Solution

® For interval 1.0 <=t <I|.5 hrs

o15
110 A(f)dt = 4000t

»1.5

 u(t)dr=2200t +C,

| p(t)dr = 22001 +1800

C, =1800 from initial conditions (at t=1 there are 4000 cars that arrived)

@ VirginiaTech
Invent the Future
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Hand Calculations and Solution

® For interval |.5 <=1t <3.75 hrs

»3.75
. A(t)dt = 4000¢
»3

" (1) dt = 44001 + C,

J15

'135'75 1(r)dt = 4400¢ 1500

C, =-1500 from initial conditions (at t=1.5 there are 5100 cars that arrived)

4000 + 2200(0.5) = 4000 + C,
C, =-1500
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Cumulative Flow Diagram
(Integral of demand and supply functions)

Cumulative Demand and Supply (cars)
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@ VirginiaTech

Invent the Future

Excel Numerical Solution

lambda(t) lambda(t) - mu(t) [ lambda(t) - mu(t) ] At
cars/hr cars-hr

4000 4400 -20

4000 4400 -20

4000 4400 -20

4000 4400 -20

<Talale a4 )] -20

A(t) u(t) =

4000 4400 =4,
4000 4400 Al
4000 4400 -20
4000 4400 -20
4000 -20
4000 -20
4000 -20
4000 -20
4000 _ -20
4000 Al
4000 Al
4000 -20
4000 -20
4000 -20
4000 90

90

90

L, +(A@)—u@)As

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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VirginiaTech
m g}nrvlem the Future

Observations

® VWe used the Euler numerical integration algorithm

(fixed step size) At = 0.05 hours N the Excel

solution
® VWhen the value of:

(A1) — u()) At <0

® is negative, we do not add the value to the queue
length (queues cannot be negative)

® The queue starts at t = 1.0 hours

® The queue length peaks at t = 1.5 hours

® The queue ends at t = 3.75 hrs

J
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Graphical Solution to Highway
“Bottleneck™ Problem

FlOW Rates v IR N N BN RO S A S S
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@ VirginiaTech
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Graphical Solution to Highway

Vehicles in Queue
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Virginia
Solutions @) Tech

a) Find the maximum number of cars queued

By ispection the maximum number of cars queueing at
the bottleneck are 900 passengers.

b) Find the average delay imposed to all cars during the
queue.

Calculate the area under the second curve (in the previous
slide) and then divide by the number of cars that were
delayed

J
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Graphical Solution to Highway
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Some Statistics about the Problem

Average arrival rate (cars/hr) = 4000
Average capacity (cars/hr) = 3771
Simulation Period (hours) = 5 (hours)

Total delay (car-hr) = 1237

Max queue length (cars) = 900

Vlrgmmlil]&]l Tech
@
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~ @ VirginiaTech
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Airport Terminal Queueing

Ticketing Areas

|

o ¢¢ o b
L Arrival “Greeting” Areas |
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4 Virginia
Example # 2 : Lumped Service Model (Passengers at{QTech
a Terminal Facility)

In the planning program for renovating an airport terminal
facility 1t 1s important to estimate the requirements for the
ground access area. It has been estimated that an hourly
capacity of 1500 passengers can be adequately be served
with the existing facilities at a medium size regional
airport.

Due to future expansion plans for the terminal, one third
of the ground service area will be closed for 2 hours 1n
order to perform inspection checks to ensure expansion
compatibility. A recent passenger count reveals an arrival
function as shown below.

. J
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Virginia
Example Problem (Airport Terminal) [ Tech

A=1500for0<t<1 t in hours
A =500 fort>1

where, A 1s the arrival function (demand function) and t is
the time 1n hours. Estimate the following parameters:

- The maximum queue length, L(t) 1
- The total delay to passengers, T4
- The average length of queue, L

- The average waiting time, W

- The delay to a passenger arriving 30 minutes hour after
the terminal closure

J
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Virginia
Example Problem (Airport Terminal) [ Tech

Solution:

The demand function has been given explicitly in the
statement of the problem. The supply function as stated in
the problem are deduced to be,

w=1000 if t <2
w=1500ift>2

Plotting the demand and supply functions might help
understanding the problem

J
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Graphical Solution (Airport Queueing)

® Plot of demand and supply (capacity) rates for airport
terminal problem

Area with capacity deficit
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@ VirginiaTech
Invent the Future

Deterministic Queueing Equations

dL Rate of change of Queue Length
ar = A1)~ u(1) as a function of time

A(t) = arrival rate (entities/time unit)

u(t) = service rate (entities/time unit)

A(t) = demand function

u(t) = service function

In finite difference form we can solve the equation

for L, numerically

L =L, +(d—L)At

ds Queue Length
L=L_,+ (/1(2‘) — u(t)) A function

Airport Planning and Design (Antonio A.Trani) 2323 of 95



@ VirginiaTech

Graphical Solution (Airport Queueing)

Invent the Future

® Interpretation of queue length and waiting time for a
passenger for the example problem
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@ VirginiaTech

Graphical Solution (Airport Queueing)

Invent the Future

® Plot of cumulative demand and supply (capacity) rates for
airport terminal problem
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@ VirginiaTech

Invent the Future

Graphical Solution (Airport Queueing)

® Another way to represent queueing in this problem is to plot
the difference between cumulative demand and cumulative
supply rates (shown below)

Queue length
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Virginia
Example Problem (Airport Terminal) [ Tech

To find the average queue length (L) during the period of
interest, we evaluate the total area under the cumulative
curves (to find total delay)

Tq=2[(1/2)(1500-1000)] = 500 passengers-hour

Find the maximum number of passengers in the queue,
L(t) maxo

L(t)ax = 1500 - 1000 = 500 passengers at time t=1.0
hours

Find the average delay to a passenger (W)

J
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Virginia h
Example Problem (Airport Terminal) LIRS

W = —¢ = 15 minutes
where, T 1s the total delay and N 1s the number of

passengers that where delayed during the queueing
incident.

L = %’ = 250 passengers

q

where, T 1s the total delay and tg is the time that the
queue lasts.

J
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Virginia
Example Problem (Airport Terminal) [ Tech

Now we can find the delay for a passenger entering the
terminal 30 minutes after the partial terminal closure
occurs. Note that at t = 0.5 hours 750 passengers have
entered the terminal before the passenger in question.
Thus we need to find the time when the supply function,
w(t), achieves a value of 750 so that the passenger “gets
serviced”. This occurs at,

u(t+ At) = A(t) = 750 @.1)

therefore At is just 15 minutes (the passenger actually
leaves the terminal at a time t+At equal to 0.75 hours).
This can be shown 1n the diagram on the next page.

J
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Virginia
Example Problem (Airport Terminal) [ Tech

Demand and Supply Functions for Example Problem

1: Passengers In 2: Passengers Served

1] 2000.00=
2

/1%
Passenger enters 2/

1] 1000.00+
1
2
_—" | Passenger leaves
7

H 0.00- v ¢ !

0.00 0.50 1.00 1.50 2.00

d Time (hrs)
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Deterministic Queueing Model
Area Under Curve Calculations

Queue length function is:
L=L_, +(A()—u@))At

The area under the queue length function is:

A =A_, +(L(@®))At

@ VirginiaTech
Invent the Future

Queue Length Function

Area Under the Length

Function
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@ VirginiaTech

Invent the Future

Airport Terminal Excel Solution

L(t) lambda(t) mu(t) lambda(t) - mu(t) [ lambda(t) - mu(t) ] At | [ lambda(t) ] At [ mu(t)] At
Passengers Passengers/hr Passengers/hr Passengers/hr Passengers
0.00 0 1500 1000 500 0.05 25 75 50
0.05 25 1500 1000 500 0.05 25 75 50
0.10 50 1500 1000 500 0.05 5 75 50
0.15 75 1500 1000 500 0.05 75 50
0.20 100 1500 1000 500 0.05 25 75 50
0.25 125 1500 1000 500 0.05 25 75 50
0.30 150 1500 1000 500 0.05 25 75 50
0.35 175 1500 1000 50 0.05 50
0.40 200 1500 1000 500 0.05 50
0.45 225 1500] 1000] 500 0.05 A(t) — u (t‘)) At 50
0.50 250 1000 500 0.05 50
0.55 275 l( t‘) 1000 500 0.05 Z5 75 50
0.60 300 1000 can | nne 25 75 50
0.65 325 1500 1000 dL 25 75 50
0.70 1000 25 75 50
0.75 _— - A(t) —_— u(l’) 25 75 50
0.80 (t) 25 75 50
0.85 u d t 25 75 50
0.90 TUUU 25 75 50
0.95 1000 500 0.05 25 75 50
1.00 1000 -500 0.05 -25 25 50
1.05 1000 -500 0.05 -25 25 50
1.10 1000 -500 0.05 -25 25 50
1.15 1000 -500 0.05 -25 25 50
1.20 -25 25 50
1.25 > -25 25 50
1.30 350 500 L — L + (A(t) —_— u(t)) At 25 25 50
1.35 325 500 t t—At -25 25 50
140 300 500 EA"AYAY AAY "o '25 25 50
1.45 275 500 1000 -500 0.05 -25 25 50
1.50 250 500 1000 -500 0.05 -25 25 50
1.55 225 500 1000 -500 0.05 -25 25 50
1.60 200 500 1000 -500 0.05 -25 25 50
1.65 175 500 1000 -500 0.05 -25 25 50
1.70 150 500 1000 -500 0.05 -25 25 50
1.75 125 500 1000 -500 0.05 -25 25 50
1.80 100 500 1000 -500 0.05 -25 25 50
1.85 75 500 1000 -500 0.05 -25 25 50
1.90 50 500 1000 -500 0.05 -25 25 50
1.95 25 500 1000 -500 0.05 -25 25 50
2.00 0 500 1000 -500 0.05 -25 25 50

J
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We used the Euler numerical integration algorithm

Observations

(fixed step size)

When the value of:

(A(D)— (1) Ar< 0

is negative, we do not add the value to the queue

length (queues cannot be negative)

T
T
T

ne queue starts at t = 0.0 hours

e queue length peaks at t = .0 hours

ne queue ends at t = 2.0 hrs

@ VirginiaTech
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@ VirginiaTech
Invent the Future

Matlab Script Solution
(Deterministic Queueing Model)

® Main file: deterministicQueue_airport.m

® Function: fqueue_deterministic_mod.m

% Deterministic queueing simulation of an airport facility

% Treats demand and capacity as continuous functions

% (time dependent) Vectors

% to change demand
% Integrates the demand and supply flow rates to get

% cumulative supply and demand curves and SUPPl)’ rates

%
% Basic state equations =>

% p(1) = L(t) = L(t-1) + [demand(t) - supply(t)] (dt) % queugZlength
% p(2) = A(t) = A(t-1) + [L(D)] (dt) % argd under L(t) curve

% Enter demand function as an array of values over time

% time = time vector containing discrete points in tim
% demand = vector with values of demand rate (ep#ties/time) observed in the system
% capacity = vector with values of capacity rate (#ntities/time) for the system

time =[0 1 1.00001 2 2.00001 3 4]; % values of time (time vector)
demand = [1500 1500 500 500 500 500 500]; % values of demand over time
capacity = [1000 1000 1000 1000 1500 1500 1500 ]; % values of capacity over time

J
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Matlab Script Solution
(Deterministic Queueing Model)

@ VirginiaTech
Invent the Future
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Virginia

Remarks About Deterministic Queues

. Introducing some time variations in the system we can
casily grasp the benefit of the simulation

- Most of the queueing processes at airport terminals are
non-steady thus analytic models seldom apply

. Data typically exist on passenger behaviors over time
that can be used to feed these deterministic, non-steady
models

The capacity function 1s perhaps the most difficult to
wuantify because human performance is affected by the
state of the system (i.e., queue length among others)

[ Tech
@
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Example of Runway Departure Queueing e

CLT Runway 18C
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@ VirginiaTech

Invent the Future

Runway Departure Queueing (CLT)
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@ VirginiaTech

Invent the Future

Samples of Runway Departure Queueing
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@ VirginiaTech
Invent the Future

Designated Areas for Departure Queueing

Source: Google Earth

Departure
Holding Pad
Area (1200 x 690 feet)

- Holding Lines

B
A

Runway 22L

Chicago O’Hare International Airport
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@ VirginiaTech
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Designated Areas for Departure Queueing

. Source: Google Earth |
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Example: Aircraft Delays Using
Deterministic Queueing Model

An airport has two parallel runways separated 5,000 feet
away and oriented East-VVest

The saturation capacity analysis for one of the runways
yields the Pareto diagram shown in the following figure

Assume that the fleet mix operating at both runways is the
same

The diagram assumes that the runway is operated in mixed
mode

The analysis was done for IFR conditions

irginiaTe
mv g}r{/]éntaihegtgulrg
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Airport Diagram

® Note: runways are used in segregated mode

@ VirginiaTech
Invent the Future

-

5,000 feet

>

J
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Arrivals (per hour)

—
O g O

at the Airport (Mixed Mode)

" Pareto Diagram for a Single Runway

LA Fo Yy
|l|"u,u..r.j o)
—= (35.26)
-_-_‘_H_H_'_'_"‘—-—-—._. !
H\\
“w\‘fq,m
N
\\._Lmn
0 10 20 30 40 50 50

Analysis using the
single runway Excel
spreadsheet model

Departures (per hour)

One-runway Pareto Diagram. Mixed Runway Use. IFR Conditions.
Numbers in the Plot Represent (Departure, Arrival) Pairs.
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Airport Demand Function

(Daily Demand)
Time (hrs) Arrival demand Departure demand
(Center of hourly interval) (aircraft/hr) (aircraft/hr)
1.5 10 6
2.5 4 6
3.5 3 4
4.5 10 4
5.5 21 |7
6.5 22 41
7.5 33 51
8.5 40 73
9.5 38 63
10.5 32 41
1.5 20 43
J
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- -
Airport Demand Function

(Daily Demand) - Part 2
Time (hrs) Arrival demand Departure demand
(Center of hourly interval) (aircraft/hr) (aircraft/hr)
12.5 32 34
13.5 23 23
14.5 37 26
15.5 40 29
16.5 25 38
17.5 23 71
18.5 20 62
19.5 37 62
20.5 36 43
21.5 29 36
22.5 20 36
23.5 13 |
J
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Relevant Questions

a) Draw the Pareto capacity diagram for the complete airport
runway system (i.e., both runways) if the runways are used in
segregated mode in IFR conditions.

b) If the airport is operated in segregated mode, determine the
average delay to arriving aircraft if the arrival demand
function proposed by the airlines is shown in Table |.Assume IFR
conditions prevail in the design day.

c) If the airport is operated in segregated mode, determine the
average delay to departing aircraft if the departure demand
function proposed by the airlines is shown in Table |.Assume IFR
conditions prevail in the design day.

J
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Part (a) Pareto Diagram for Complete
Airport (Segregated Mode)

35

@ VirginiaTech
Invent the Future

30 Two Runways (segregated-mode)

25

Arr. Capacity = 32/hr
20

15

5,000 feet

Arrivals per Hour

10

5 Dep. Capacity = 54/hr ;

0 10 20 30 40 50
Departures per Hour

60

J
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Part (b) Delays for Arriving Aircraft

Derrana Fate
=== Capaciy Rate

2T
£5

=
=
£

® The problem is
decomposed into
two separate

Arr, Capacity = 32/hr
analyses: %.

® delay
calculation for 5,000 feet

arrivals and,
Dep. Capacity = 54/hr ;

Capag

1%
Time (hours})

® delay
calculation for
departures

ur)

Rates (Aircraft/ho

Demand or Capacity

15
Time (hours)

J
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Part (b) Delays for Arriving Aircraft

® Arrival demand and arrival runway capacity

Periods where demand > capacity

JANEERY

4 ; ; — Dermand Rate ||

40 “:" Capacity Rate

A T e CUIIHINRTRS Lo T R RN -
e e TR TR RN TR R A R Y A S TS
E o B 1 R e R GatEE R B e T -
0 i i
8 c E i
o T R L L L EEEEEe Brosessesseeh e O RLLLLLLLLLLLLLLLLLEREES e
Q&= i i
o8 | |
T 1 R S L i S T -
G £ | z
- L Tt SO e e e mm e O WSRO SRR "
c : !
g @ : i
0 VU0 00000 S — Faeesees e T et E R -
o ® : :
O o : ;

5 e t ------------------------------------------- \- ---------------------------------------------------------------------- and

0 § e -

I g g g S N

5] 10 15 20 25
Time (hours)
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® Numerical integration solution for queue length function (L)

.
L=L, +((—)Ar

Part (b) Queue Length Function

dt

Use deterministic queue Matlab code:

det_queue enhanced.m
L =L, ,+(At)—u@)At (see Matlab files for CEE 5614)

@ VirginiaTech

Invent the Future

° a a ? .’ .!

7 A S VSRS S — The maximum arrival queue

' length is estimated to be 14.53

e " aircraft at 10:30 AM in the design |’

e e e T day -4
LU b] : : '
= : : :

T e S =
£

. OSSO S, S, U S .
& i i i
o i i |

> O A A S E

s PR S A S | S M SR G — .

ZSS N W/ NN V" A — — i
» i i i i j

i 5 10 15 20 25 30

Time (Hours)
J
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nvent the Future

Part (b) Integral of Queue Length
Function

® Numerical integration Use deterministic queue Matlab code:
solution for the area det_queue_enhanced.m

under the curve of the (see Matlab files for CEE 5614)
queue length function (L;)

Total Delay (Aircraft-hour)

o ) ) e ) a
e :
AL Ml i AW .., :
T e :
e e :
-l - i b :
20 " """""""""" Total delay is estimated to |7
10 *- ------------------- be 70.84 aircraft-hours =
] i ' i i 3

i] 5 10 15 20 25 30

Time (hours)

J
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Part (b) Find the Average Arrival Delay

® Three queues were observed in the period of analysis (one day)

® Total number of aircraft delayed are calculated for the periods

when the queues persist

Period 2|_|Period 3

mVirgniaTem

nvent the Future

16 i Period | L !
5 — » [ X A
12 """""""""""""""""""""" -
© i
o s s s
= : ; :
O 8 : E ;
£
£ 6 : i i
S i | a
= ; | i
< ° f
: i i ; 1 |
0 5 10 15 20 25 30
Time (Hours)
J
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Part (b) Cumulative Arrivals Function

@ VirginiaTech
Invent the Future

Cumulative Aircraft

o0l ] ] ] ] ]

A Arrlvals in
500 __,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,i,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,L,,,,,, . .
Queuelng

Period
Third

400 ‘"“““““"-"“"""“"““""""“"““E"“""""““““".““.“A““"A“Fi;-i{);é‘lg“iﬁ.““"““.““.““""""“"““E."“"“"““"““ . I 9 Perlod

Second
Queuelng

A

s Arrlvals in :Second

Queueing Period

Period f < >

Queueing

< Periéod >

: a '1 | ) ‘|

Queueing |

v Perlod

0 = 10 15 20 25
Time (hours)

30

J
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Part (b) Cumulative Arrivals

Time (hrs) Cumulative Arrivals Arrivals in Queueing Period
7.4 87
274-87 = 187
13.25 274
14.15 298
405-298=107
17.5 405
19.2 445
546-445=101
22.34 546
Total Arrivals Queued 395

J
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Part (b) Find the Average Arrival Delay

® TJotal delay = 70.84 aircraft-hours

® Total aircraft delayed = 395 aircraft

® Average delay per aircraft = 0.179 hours (or 10.7

minutes)

@ VirginiaTech
Invent the Future
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Part (c) Departure Delays

® Repeat the same process for departures

® Use departure saturation capacity found in the

initial analysis (54 operations per hour)

@ VirginiaTech
Invent the Future
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Part (c) Departure Demand Function

® Departure demand and departure runway capacity

Periods where departure demand > dep. capacity

Demand or Capacity
Rates (Aircraft/hour)

L |
1 PO S | e remnre e A S e — Demand Rate |
5 i ' ¢ -——- Capacity Rate

Time (hours)

J
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~

® Numerical integration solution for queue length function (L)
dL
=L\t ar At Use deterministic queue Matlab code:

=L, +(At)— u(t)) At (see Matlab files for CEE 5614)

@ VirginiaTech

Invent the Future

Part (c) Departure Queue Length Function

det_queue enhanced.m

Aircraft in Queue

30

25

20

The maximum departure
i ! ! i queue length is estimated to
I R A N s N be 26.3 aircraft at 19:45 in
the design day
1 1 l 1 ]
1] 5 10 15 20 25 30
Time (Hours)

J
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Part (c) Integral of Departure Queue
Length Function

® Numerical integration Use deterministic queue Matlab code:
solution for the area det_queue_enhanced.m

under the curve of the (see Matlab files for CEE 5614)
queue length function (L;)

4 ) ) ) : )
"1 Total delay is estimated to """"""""""""""""""""" .
3 ook be 136.7 aircraft-hours | . . ]
© s s
S O S SO SO — .
<
s O SO S S S .
© | |
-
T L NN i iibnihbbjiiiii i b i HHi->ie .
= | |
R i e i li il Il .
: i i i ;
1] 5 15 20 25 30
Time (hours)

J
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Cumulative Aircraft
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Part (c) Cumulative Departures Function
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Part (c) Cumulative Departures

Time (hrs) Cumulative Departures Departures in Queueing Period
7.7 113
354-113 = 241
12.1 354
|7 506
776-506=270
22 776
Total Departures Queued 511

J

Virginia Tech (A.A.Trani) 31r of 95



@ VirginiaTech
Invent the Future

Part (b) Find the Average Arrival Delay

® TJotal delay = 135.7 aircraft-hours

® TJotal aircraft delayed = 51| aircraft

® Average delay per aircraft = 0.27 hours (or 16
minutes)

J
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'Cumulative Demand and Supply Diagrams
(for Departure Operations)

Figures - Figure 4
File Edit View Insert Tools Debug Desktop Window Help

x 2 » DEESE h RAM® £ DE =50 M mE & 0

00 ] ] ] ] ]

—E— Cumulative Demand
0] ——== Cumulative Capacity

F00

500

200

400

Cumulative Aircraft

Time (hours)

4
\ y,
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Two Files Used to Estimate the Delays Using the
Deterministic Queueing model

‘Notes 20 - Review of Queueing Theory Week | O
Notes 21 Sample Deterministic Queue Problem

In the Weekly Planner

e Deterministic Queueing Model - Main File (Matlab script)
e Deterministic Queueing Model - Function File (Matlab script)

Open each link labeled Deterministic queueing model
Open Matlab

Create a new script in Matlab

Copy the code copied from the web page to the Matlab
script

Modify the time, demand and capacity vectors as needed
Run the Matlab main file



& VirginiaTech

Invent the Future

Main File: Deterministic Queueing Model

‘Notes 20 - Review of Queueing_Theory
Notes 21 Sample Deterministic Queue Problem

e Deterministic Queueing Model - Main File (Matlab script)
e Deterministic Queueing Model - Function File (Matlab script)

53 % Enter demand function as an array of values over time

54

55 % time = time vector containing discrete points in time

56 T % demand = vector with values of demand rate (entities/time) observed in the system

57 % capacity = vector with values of capacity rate (entities/time) for the system

58

59 % time = [0 1 1.00001 2 2.00001 3 4 ]; % values of time (time vector)

60 T % demand = [1500 1500 500 500 500 500 500]; % values of demand over time

61 % capacity = [1000 1000 1000 1000 1500 1500 1500 ]; % values of capacity over time

62

63 T % Alternative demand function (to illustrate the time-depent nature of the solution)

64 %

65 % Example in course notes for two runways used in segregated mode

66 time = 0.5:1:23.5; % values of time (time vector in vector form)
67 demand =[7 104 3 10 21 22 33 40 38 32 20 32 23 37 40 25 23 20 37 36 29 20 13]; % arrival values of demand over time
68 capacity = [32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32];




& VirginiaTech

Invent the Future

Changing Assumptions for Demand and Capacity

53 % Enter demand function as an array of values over time

54

55 % time = time vector containing discrete points in time

56 T % demand = vector with values of demand rate (entities/time) observed in the system

57 % capacity = vector with values of capacity rate (entities/time) for the system

58

59 % time = [0 1 1.00001 2 2.00001 3 4 ]; % values of time (time vector)

60 T % demand = [1500 1500 500 500 500 500 500]; % values of demand over time

61 % capacity = [1000 1000 1000 1000 1500 1500 1500 ]; % values of capacity over time

62

63 % Alternative demand function (to illustrate the time-depent nature of the solution)

64 T %

65 % Example in course notes for two runways used in segregated mode

66 time = 0.5:1:23.5; % values of time (time vector in vector form)
67 demand =[7 104 3 10 21 22 33 40 38 32 20 32 23 37 40 25 23 20 37 36 29 20 13]; % arrival values of demand over time
68 capacity = [32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32];

* Time = vector of time values to be evaluated in solving
the differential equations for delay and queue length

*Demand = Lambda (t) - demand as a function of time

* Capacity = Mu(t) - capacity asa. Function of time
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Matlab ODE (Ordinary Differential Equation) Solver

86 @ % where:

87 % to is the initial time to solve this equation

88 % tf is the final time

89 - % tspan is the time span to solve the simulation
90

01 T % Call the ODE solver in Matlab and call function fqueue_deterministic that

02 % contains the rates of change of demand and capacity
03

94 [t,p] = ode23('fqueue_deterministic_mod',tspan,po);

95

ODE solver calls the function
“fqueue_deterministic_mod’ (the second file
saved from the web)

tspan is a vector with initial and final times to solve the ODEs
po = initial conditions of the problem (queue length and delay)
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Plots of Results

117 figure

118 set(gca,'fontsize', 20)

119

120 subplot(2,1,1)

121 plot(time,demand,'b',time,capacity,'--k’)

122 xlabel('Time (hours)','fontsize’,20)

123 ylabel('Demand or Capacity Rates (Entities/hour)’,'fontsize’,20)
124 axis([mintime maxtime minplot maxplot])

125 legend('Demand (\lambda)','Capacity (\mu)’)

126 grid g

127 &

128 subplot(2,1,2) 5

129 plot(t,p(:,1),'b") i

130 xlabel("Time (Hours)','fontsize’,20) Z

131 ylabel('Queue Length (L(t))','fontsize’,20) ; Time (hours)
132 grid

LengthA(L(tz) o

Queue
o -

15
Time (Hours)
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Plots of Results

138 figure

139 set(gca,'fontsize', 20)

140

141 subplot(2,1,1)

142 plot(t,p(:,1),'b)

143 xlabel('Time (hours)','fontsize’,20)

144 ylabel('Queue Length (L(t)) - Entities', fontsize',20)

145 grid 5

146 =

147 subplot(2,1,2) =~

148 plot(t,p(:,2), k') : /\
149 xlabel('Time (hours)','fontsize',20) | & | /\
150 ylabel('Total Delay (Entities-hour)','for] &

151 grid Time (hours

Total Delay (Entities-hour)

Time (hours)
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Deterministic Queue Results
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156 figure

157

158 plot(t,p(:,4),'0-k'",t,p(:,5),"A--r")

159 set(gca,'fontsize’, 20)

160 xlabel('Time (hours)','fontsize',20)

161 ylabel('Cumulative Number of Entities','fontsize',20)

— 1 ! ~ ative Capacity (\int_{0}\t} \mu(t) dt)','fontsize',20)

——Cumulative Demand (/ A(t) it

—+ Cumulative Capacity (fg () dt) _

500

Deterministic Queueing Model

Cumulative Number of Entities

Time (hours) Simulation Period (hours) = 26.5

Cumulatlve demand Total delay (aircraft-hour) = 70.7945
And Cumulative SUPPIY PIOt Max queue length (aircraft) = 14.5309

Numerical values of queue length

And today delay
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Function: fqueue deterministic mod.m

Contains the ODEs to be solved using Matlab

24 % Two state variables in the system

25 % p(1) = L(t) = L(t-1) + [demand(t) - supply(t)] (dt) % queue length

26 % p(2) =A(t) = A(t-1) + [L(1)] (dt) % area under L(t) curve
27

282  function pprime = fqueue_deterministic_mod(t,p)

29

30 global demand capacity time

31

32 % Define the rate equations

33

34 demand_table = interpi(time,demand,t);

35 capacity_table = interp1(time,capacity,t);

36

37 if (demand_table < capacity_table) & (p(1) > 0)

38 pprime(1) = demand_table - capacity_table; % rate of change in state variable
39 elseif demand_table > capacity_table

40 pprime(1) = demand_table - capacity_table; % rate of change in state variable
41 else

42 pprime(1) = 0.0; % avoids accumulation of entities if queue length is zero
43 end




4 Virginia
Stochastic Queueing Theory (Nomenclature per  @T®
Hillier and Lieberman)

These models can only be generalized for simple arrival
and departure functions since the involvement of complex
functions make their analytic solution almost impossible
to achieve. The process to be described first 1s the so-
called birth and death process that 1s completely
analogous to the arrival and departure of an entity from
the queueing system 1n hand.

Before we try to describe the mathematical equations it 1s
necessary to understand the basic principles of the
stochastic queue and its nomenclature.

. J
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Fundamental Elements of a Queueing System @T&h
Queueing System
Queue
Service
. O O O Facility >
Entering Served

Customers Customers
Y,
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Nomenclature @Tech

Queue length = No. of customers waiting for service
L(t) = State of the system - customers 1n queue at time t
N(t) = Number of customers in queueing system at time t

P(t) = Prob. of exactly n customers are in queueing
system at time t

s = No. of servers (parallel service)
A, =  Mean arrival rate
u, =  Mean service rate for overall system

J
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Other Definitions in Queueing Systems

If A, 1s constant for all n then (1/A) it represents the
interarrival time. Also, 1s u, 1s constant for all n > 1

(constant for each busy server) then un = m service rate
and (1/w) 1s the service time (mean).

Finally, for a multiserver system su 1s the total service
rate and also p = 1/su 1s the utilization factor. This is the
amount of time that the service facility 1s being used.

Virginia

[ Tech
@

J
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Stochastic Queueing Systems [ Tech

The idea behind the queueing process is to analyze
steady-state conditions. Lets define some notation
applicable for steady-state conditions,

N = No. of customers 1n queueing system

P, = Prob. of exactly n customers are in queueing system

L = Expected no. of customers in queueing system

L, = Queue length (expected)

W = Waiting time in system (includes service time)

W, = Waiting time 1n queue

J

Virginia Polytechnic Institute and State University 44 of 95



Virginia
There are some basic relationships that have beed @Te‘:h
derived 1n standard textbooks in operations research

[Hillier and Lieberman, 1991]. Some of these more basic

relationships are:
L =AW
Lg=AWq

The analysis of stochastic queueing systems can be easily
understood with the use of “Birth-Death” rate diagrams as
illustrated in the next figure. Here the transitions of a
system are 1llustrated by the state conditions 0, 1, 2, 3,..
etc. Each state corresponds to a situation where there are
n customers in the system. This implies that state 0 means
that the system is idle (i,e., no customers), system at state
1 means there 1s one customer and so forth.

J
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Rate Diagram for Birth-and-Rate Process
Ao M An-1
pl n2 un

Note: Only possible transitions in the state of the system
are shown.

[ Tech
@

J
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Stochastic Queueing Systems [ Tech

For a queue to achieve steady-state we require that all
rates in equal the rates out or in other words that all
transitions out are equal to all the transitions in. This
implies that there has to be a balance between entering
and leaving entities.

Consider state 0. This state can only be reached from state
1 1f one departure occurs. The steady state probability of
being in state 1 (P) represents the portion of the time that

it would be possible to enter state 0. The mean rate at
which this happens 1s u{P;. Using the same argument the

mean occurrence rate of the leaving incidents must be A
P, to the balance equation,

J
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Stochastic Queueing Systems

wi Py =2ApP

For every other state there are two possible transitions.
Both into and out of the state.

Mo Po =Py

Mo Po+up Py=»APy+uy Py
M Prtuz P3=2Pr + 1y Py
Ay Pyt 1y Py=A3P3 + 13 Ps

until, 7\'n-l Pt + gt P = 7"nMn +u, Py

[ Tech
@

J
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Stochastic Queueing Systems [ Tech

Since we are interested in the probabilities of the system
in every state n want to know the P,'s in the process. The

1dea 1s to solve these equations in terms of one variable
(say Pg) as there 1s one more variable than equations.

For every state we have,
Py =Ao/uy Py
Py =hhAo/ g uy Py

P3=Mhy A Ao/ up up u3 Py

J
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Stochastic Queueing Systems !

Let C, be defined as,

Once this 1s accomplished we can determine the values of
all probabilities since the sum of all have to equate to
unity.

J
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Stochastic Queueing Systems

P, + EC”PO =1
i=1

Solving for P, we have,

1
1+ECn
VAN

Now we are in the position to solve for the remaining
queue parameters, L the average no. of entities in the
system, Lq, the average number of customers in the

Virginia

[ Tech
@

J
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Virginia

queue, W, the average waiting time in the system and (@b
Wq the average waiting time in the queue.
Pn = Cn I:)0
= E nP,
Lq - E (n o S)Pn
- L
Ve
W, = Lo
I
J
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Virginia
This process can then be repeated for specific @Te‘:h
queueing scenarios where the number of customers 1s
finite, infinite, etc. and for one or multiple servers. All

systems can be derived using “birth-death” rate diagrams.

J

Virginia Polytechnic Institute and State University 53 of 95



VirginiaT h
Stochastic Queueing Systems !

Depending on the simplifying assumptions made,
queueing systems can be solved analytically.

The following section presents equations for the
following queueing systems when poisson arrivals and
negative exponential service times apply:

a) Single server - infinite source (constant A and w)
b) Multiple server - infinite source (constant A and u)
c¢) Single server - finite source (constant A and u)

d) Multiple server - finite source (constant A and u)

J
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Stochastic Queueing Systems Nomenclature (@) Tech

The idea behind the queueing process is to analyze
steady-state conditions. Lets define some notation
applicable for steady-state conditions,

N = No. of customers 1n queueing system

P, = Prob. of exactly n customers are in queueing system

L = Expected no. of customers in queueing system

L, = Queue length (expected)

W = Waiting time in system (includes service time)

W, = Waiting time 1n queue

J
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Stochastic Queueing Systems [ Tech

There are some basic relationships that have beed derived
in standard textbooks in operations research [Hillier and
Lieberman, 1991]. Some of these more basic relationships
are:

L =AW
Lg=AWq

J
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Stochastic Queueing Systems !

Single server - infinite source (constant A and u)
Assumptions:

a) Probability between arrivals is negative exponential
with parameter 2,

b) Probability between service completions 1s negative
exponential with parameter u,

¢) Only one arrival or service occurs at a given time

J
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Single server - Infinite Source (Constant » and ) @&
o = »/u Utilization factor
Po = (E P ) - _ =1-p
1 + E p n=0
P,=pP,=(1-p)p" forn=0,1,2,3,.....
L = Lx expected number of entities in the system
"
L, = A expected no. of entities in the queue
(W=2A)w
J
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@Tech
= L}\ average waiting time in the queueing
"
system
w, = —2% average waiting time in the queue
(u—=2)u
P(W>t) = e** "  probability distribution of waiting
times
(including the service potion in the SF)
J
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Multiple Server [ Tech
Infinite source (constant A and u)

Assumptions:

a) Probability between arrivals 1s negative exponential
with parameter 2,

b) Probability between service completions 1s negative
exponential with parameter u,

c) Only one arrival or service occurs at a given time

J
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Multiple Server - Infinite Source (constant » , ) PP
p = A/su utilization factor of the facility
(o0, w1
& 1/(2 n! ' s! <1 —()»/su)>)
1dle probability
(}\,/M)np O<n<s
I 0
P, = -
(k/u)”P n=s
sis"
probability of n entities in the system
y,
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@Tech
pPo(ﬁ)
- W LA
sl(1-p)* w
expected number of entities 1in system
oPi( ) .
L, = S'(l—“)z expected number of entities in queue
AL=p
W, = %* average waiting time in queue
W = % = Wq+% average waiting time in system
Finally the probability distribution of waiting times 1is,
J
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[ Tech
_ }\’ S — w
PO(@) 1 _ e 1w
P(W>t) = e™|1+ ( - )
(W>1) S(1-—p)\ s—1—r/q
if s—1-A/u=0 thenuse
1 o efut(sflfk/u)
s—1-A/u
y,
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Single Server - Finite Source (constant » and ) @&

Assumptions:

a) Interarrival times have a negative exponential PDF with
parameter A,

b) Probability between service completions 1s negative
exponential with parameter u,

¢) Only one arrival or service occurs at a given time

d) M i1s the total number of entities to be served (calling
population)

. J
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Single Server - Finite Source (constant » and ) QT

p = A/u utilization factor of the facility

= 1/2 Y )'(x/ > idle probability

M!
(M—n)!
of n entities 1n the system

P, = (A/w)P, for n=1,23,..M probability

L, = M-%° x(1 P,) expected number of entities in

queue

J
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L=M- ;f(l -P,) expected number of entities in

system

W, = S average waiting time in queue
A

W = = average waiting time in system

>l

where:

L = A(M-L) average arrival rate

V1rg1nmil]511 Tech
@

J
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Multiple Server Cases

Finite source (constant A and u)

Assumptions:

a) Interarrival times have a negative exponential PDF with

parameter A,

b) Probability between service completions 1s negative
exponential with parameter u,

c) Only one arrival or service occurs at a given time

d) M 1s the total number of entities to be served (calling
population)

[ Tech
@

J
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Multiple Server - Finite Source (constant » and  [JPT®
1)
p = A/us utilization factor of the facility
s—1 M n M M1 n
P, =1/ : A/ + : N/
{EO((M - n)!n!( 2 ) E <(|v| —~ n)!s!s”s( W) )}
1dle probability
M! n
(M—n)!n!(k/u) Po O<ns=ss
P, = if
M! _(M/W)"P, S<sn=M
(M—n)!s!s"
0 n=M
J
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L, = E (n—s)P, expected number of entities in

queue

M s—-1 s—1
L = Enpn = EnPn+Lq+s(1—EPn)
n=0 n=0 n=0

expected number of entities in system

—

W, = =¢ average waiting time 1n queue

>1|

average waiting time in system

>l

Vlrgmmlil]&]l Tech
@

J
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where: @Te‘:h

L = A(M-L) average arrival rate

J
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Example (3): Level of Service at Security [ Tech
Checkpoints

The airport shown in the next figures has two security
checkpoints for all passengers boarding aircraft. Each
security check point has two x-ray machines. A survey
reveals that on the average a passenger takes 45 seconds
to go through the system (negative exponential
distribution service time).

The arrival rate 1s known to be random (this equates to a
Poisson distribution) with a mean arrival rate of one
passenger every 25 seconds.

In the design year (2020) the demand for services is
expected to grow by 60% compared to that today.

J
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Relevent Operational Questions

a) What is the current utilization of the queueing system
(i.e., two x-ray machines)?

b) What should be the number of x-ray machines for the
design year of this terminal (year 2020) if the maximum
tolerable waiting time in the queue 1s 2 minutes?

c) What 1s the expected number of passengers at the
checkpoint area on a typical day in the design year (year

2020)? Assume a 60% growth in demand.

d) What is the new utilization of the future facility?

¢) What 1s the probability that more than 4 passengers
wait for service in the design year?

Virginia

[ Tech
@

J
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. . Tech
Airport Terminal Layout Il
E [I I [I Departure Lounges o Security Check Points
I Ticket Counter Modules . Utility Space and Concessions

] I

Acces$ Road

Parking Area
Passenger Flows Passenger Flows

Airport Terminal i ‘i
irport Termina l‘!" w
IOE (M) (N (Y (R (T TR (T

J
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Security Check Point Layout [ Tech

Lirculation Area

From Ticket Counters From Ticket Counters
Departing Passengers

&

i §@ (®
 © @
—® @ 4
L I
Oraliuall
HE RS [

S RO,

Arriving Passengers

--------- Queueing System - - === Service Facility

J
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Security Check Point Solutions

a) Utilization of the facility, p. Note that this 1s a multiple
server case with infinite source.

0 =2/ (sn) = 144/(2*80) = 0.90

Other queueing parameters are found using the steady-
state equations for a multi-server queueing system with
infinite population are:

Idle probability = 0.052632

Expected No. of customers in queue (Lq) = 7.6737
Expected No. of customers in system (L) = 9.4737
Average Waiting Time in Queue = 192 s

Average Waiting Time in System = 237 s

Vlrgmmlil]&]l Tech
@

J
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b) The solution to this part is done by trail and error @Te‘:h
(unless you have access to design charts used in queueing
models. As a first trial lets assume that the number of x-

ray machines is 3 (s=3).

s—1

o (M) () 1
Finding Po, PO—E n!u " S!M (1_(x/su))

Po =.0097 or less than 1% of the time the facility is i1dle
Find the waiting time 1n the queue,
WQg=332s

Since this waiting time violates the desired two minute
maximum it 1s suggested that we try a higher number of
x-ray machines to expedite service (at the expense of

J
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cost). The following figure illustrates the sensitivity @T‘*h
of P, and Lq as the number of servers 1s increased.

Note that four x-ray machines are needed to provide the
desired average waiting time, WWQ.

J
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Sensitivity of PO with S @) Tech
Note the quick variations in Po as S increases.
0.06 ! ! ! ! ! !
0.05
£0.04
=
09. 0.03
©0.02
0.01
0
S - No. of Servers
Y,
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Sensitivity of L with S @Tech
25
20
5
<10
0
5
0
S - No. of Servers
J
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Lq - Customers in Queue

25

Sensitivity of Lq with S

S - No. of Servers

Virgi

nia
[ Tech
@

J
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Sensitivity of Wq with S g Tech
0-12 ! ! ! ! ! !
= 0.1 [N el .
ol N SRRURTN RSP SRS U S
ool [ T T SRR RO S -
£ : ! : ! :
=
:‘c;% 0:04r Waiting time = i
o constraint
20.02F T
0
3 4 5 6 7 8
S - No. of Servers
This analysis demonstrates that 4 x-ray machines are
needed to satisfy the 2-minute operational design
constraint.
/
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Sensitivity of W with S @Tech

Note how fast the waiting time function decreases with S

T T T T
0.09 e LT EEEE -
0.08 e T EEE -
Eo. ISR SR BUS: RO SR SR |
e : ;
o 1 :
g\o """"""" """""""""""""""" 1
2 ! :
go R S IR -
£ 3 3
o 0. e RS R -
£ 3 3
l70.03 """"""" """"""""""""""" -
= 3 3
0.02 S T PR TE T S PPN TRIRRE -
0.01 i e -
i i .
4 5 6 7 8

S - No. of Servers

J
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Security Check Point Results [ Tech

c) The expected number of passengers in the system 1s
(with S=4),

P

s (1-p)

S

=11

L = +

A
w
L = 4.04 passengers 1n the system on the average design

year day.

d) The utilization of the improved facility (i.e., four x-ray
machines) 1s

p=A/(su)=230/(4*80)=0.72

J
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e) The probability that more than four passengers @) Tech
wait for service 1s just the probability that more than eight
passengers are in the queueing system, since four are
being served and more than four wait.

. J
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from where, P,, > 8 is 0.0879. [ Tech

Note that this probability 1s low and therefore the facility
seems properly designed to handle the majority of the
expected traffic within the two-minute waiting time
constraint.

J
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PDF of Customers in System (L) [ Tech

The PDF below 1llustrates the stochastic process resulting
from poisson arrivals and neg. exponential service times

0.2 ! ! ! ! ! ! ! ! !

B3 . . . . . . . .
0.18F 1 . s e e S S . s
0.16F || SEEPRRRI e SEPPRTIRES SRRPIRRRES R RISLIIEEEE e FERTIRRES .
0.14F o S L PR T L S .

V2 * . . . . . .
5 0.2 oo ff e b i
S~ T S O S S St S S USSR S i

S * |

T 0.08| T 4
0.06F | f L SR S L SR .
oo0ak |||l F S S S S S
0.02| - TT --------------------- S i
0 8 10 12 14 16 18 20

Number of entities

J
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Matlab Computer Code g Tech
% Multi-server queue equations with infinite population
% Sc = Number of servers
% Lambda = arrival rate
% Mu = Service rate per server
% Rho = utilization factor
% Po = Idle probability
% L = Expected no of entities in the system
% Lq = Expected no of entities in the queue
% nlast - last probability to be computed
% Initial conditions
S=5;
Lambda=3;
Mu = 4/3;
J
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nlast = 10; % last probability @Tech
value computed

Rho=Lambda/(S*Mu);

% Find Po
Po inverse=0);
sum_den=0;

for 1=0:S-1 % for the first term in the
denominator (den_1)

den 1=(Lambda/Mu)"*/fct(1);
sum_den=sum_den+den 1;
end

den 2=(Lambda/Mu)"S/(fct(S)*(1-Rho)); % for the second part of den
(den_2)

Po inverse=sum den+den 2;

Po=1/Po_inverse

J
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% Find probabilities (Pn) %Tech

Pn(1) =Po; % Initializes the first element of Pn column vector to be Po
n(l)=0; % Vector to keep track of number of entities in system

% loop to compute probabilities of n entities in the system
p pute p y

for j=1:1:nlast

n(j+1)=J;
if j) <=S
Pn(j+1) = (Lambda/Mu)"j/fct(j) * Po;
else
Pn(j+1) = (Lambda/Mu)"j/(fct(S) * Sc”(3-S)) * Po;
end
end

% Queue measures of effectiveness

Lg=(Lambda/Mu)"*S*Rho*Po/(fct(S)*(1-Rho)"2)

J
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L=Lqg+Lambda/Mu @Tech
Wg=Lg/Lambda
W = L/Lambda

plot(n,Pn)
xlabel('"Number of entities')
ylabel("probability")

J
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Example 4 - Airport Operations

Assume IFR conditions to a large hub airport with

. Arrival rates to metering point are 45 aircraft/hr

- Service times dictated by in-trail separations (120 s
headways)

Runway 09L-27R

inia
vig [[Ml]] Tech

/. > i

\ 4300 ft.

Common Arrival )%. )*. y
Metering Point Runway 09R-27L

J
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Some Results of this Simple Model g Tech
Parameter Numerical Values
A 45 aircraft/hr to arrival metering point
u 30 aircraft per runway per hour
P, 0.143
P 0.750
L 3.42 aircraft (includes those in service)
W, 2.57 minutes per aircraft
W 4.57 minutes per aircraft
J
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Sensitivity Analysis [ Tech

Lets vary the arrival rate (1) from 20 to 55 per hour and
see the effect on the aircraft delay function.

12 ' ! ! ! ! r

10 ")'§ ,,,,,,,,,,,,,,,,, S /
= | ] f : |
E 8t =
£
E 6t N Eol g b fo
2
B4 T
@©
=

2_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 i i i i i i
20 25 30 35 40 45 50 55
Arrival Rate (Aircraft/hr)
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Sensitivity of L, with Demand [ Tech

The following diagram plots the sensitivity of the
expected number of aircraft holding vs. the demand
function

10

Holding Aircraft

0 ‘ | | | | |
20 25 30 35 40 45 50 55
Arrival Rate (Aircraft/hr)

J
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Example # 5 Seaport Operations

® Seaport facility with 4 berths (a beth is an area where
ships dock for loading/unloading)

® Arrivals are random with a mean of 2.5 arrivals per day

® Average service time for a ship is 0.9 days (assume a
negative exponential distribution)

® Find:

® Expected waiting time and total cost of delays per year if
the average delay cost is $12,000 per day per ship

Virginia Tech (A.A.Trani) 94,



@ VirginiaTech
Invent the Future

" Solution (use Stochastic Queueing Model
- Infinite Population)

For the port example with parameters, A = 2.5 ships

per day and w = 0.9 ships per day (service rate) per
berth.

Use stochastic queueing model equations (infinite
population) to estimate queueing parameters,

e  System utilization (%) = 694
e Idle probability (dim) = 0.05
e Expected No. of ships in queue (Lq) = 0.95

e Expected No. of ships in system (L) = 3.7
Average Waiting Time 1n Queue (days) = 0.38
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Solution (Seaport Example)

e  Average Waiting Time in System (includes service
time) = 1.50 days

 The annual waiting cost (W _,,) is calculated using the
following simple relationship,

W, = WAN(C,...)

where;

W is the waiting cost per ship (days/ship), A is the ship
arrival rate to port (ships/day), /V is the number of days in

a year the port is open (days), and C
per unit of time per ship ($/day).

1s the delay cost

hour

@ VirginiaTech
Invent the Future
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Solution (Seaport Example)

In the first year of operations (t=0), the port has an
estimated delay cost,

ship
dallars}

day

W = (O.382)[days}(2.5)[SC];;[;}S}(%S)[dayS]

[12000)[

W_.. =4,182,000 dollars

@ VirginiaTech
Invent the Future
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Others Uses of Queueing Models
(Facilities Planning)

Queueing models can be used to estimate the life cycle
cost of a facility

Using the expected delays we can estimate times when a
facility needs to be upgraded

For example,

® Suppose the demand function (i.e., number of ships

arriving to port) for ships arriving to port increases 0%
per year

® Determine the year when new berths will be required if

the port authority wants to maintain waiting times below
0.5 days.
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@ VirginiaTech
Invent the Future

Calculations for Seaport Example

| | | R

I I I
| g) 3 Time (years)

Repeat the process for future years. For example, in year
t=1 the demand function is now 2.75 ships/day. The new
waiting time in the queue 1s then 0.63 days.

Note that since the value of waiting time in port exceeds
0.5 days, we would have to construct a new berth facility
either in year t=1 (lag solution) or in year t=0 (lead
solution) to anticipate growth in the delay function.

Note: For every iteration check the value of Wg to study
when an update to the infrastructure is needed. The
solution can be done iteratively or using trial and error
calculations for every time period.
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Number of servers

@ VirginiaTech
Invent the Future

Calculations for Seaport Example

A solution to the problem 1is illustrated in the figure
below. The solution presented here assumes that
construction of berths occurs in the following year when

the expected waiting time in port exceeds the desired Wq
threshold.

Time {years)
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@ VirginiaTech
Invent the Future

Calculations for Seaport Example

1

=
©

S
@

o
~

Waiting Time {days)
o
(o]

Level of
/ Service |

Time {years)

The figure above tracks the behavior ship delays over
time. Note that the solution presented “lags” behind the
solution that keeps Wq below 0.5 days per ship.
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Delay Cost ($)

Undiscounted Annual Delay Costs
(Lag Solution)

25+ $ I 2’000 Per hour Per Ship ............ ......................................... -
delay costs | -

Time {years)

The bar plot shows the annual delay cost (undiscounted)
for the lag solution.

@ VirginiaTech
Invent the Future
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Construction Cost Profile (Seaport)
(Lag Solution)

10 :
al BUURRN O T i
sl o _|
2 FRRRERS TERRRRE RN CRRRREE RREEES TERPRRE SRRRREE
Q X : : : : : : : :
A - 1 T S P e e e L D e e
o : : : : : : : : :
§ 5 : : ' Z : : 3 ' : : :
2 L L : : :
z 4 pe e : : :
=] : : : : : : :
3 et freneed : z 3
2 e e 5 ; z
1 SRR RRPR :- :
0 L P i i . i

10 11 12 13 14

Time {years)

The figure above 1llustrates the construction cost as a

function of time for the “lag” solution. Note that in years
2,5,7,9, 13 and 14 one more berth is built. In year 11 two
berths are needed. A total of at least 8 berths are needed.
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Total Cost ($)

Total Annual Cost (Seaport - Lag Solution)

@ VirginiaTech
Invent the Future

12

[[1] SER

$50 Miliioh pﬁeri Bérfh

Time (years)

The total cost (construction plus delay costs) time

behavior 1s 1llustrated above.
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Invent the Future

Lead Solution for Berth Construction

Another solution anticipates the violation of the level of
service parameter (Wgq). This “lead” solution also requires
8 berths throughout the life cycle of the system as
illustrated below.

12

10

8

Number of servers
o

0 1 2 3 B 5 B 7 g 9 10 11 12 13 14

Time {years)
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Lead Solution for Berth Construction

The lead solution yields the following level of service
function (Wq as a function of time).

06 | :

055

0s

0.45

04

0.35

03

Waiting Time (days)

0.25

02

0.15

m 1 i 1 i i i
0

2 4 6 8 10 12
Time {years)

@ VirginiaTech

Invent the Future
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Invent the Future

Comparing Both Solutions
Life Cycle Cost Analysis

Total life cycle cost (undiscounted) for lead solution is
5.134 x 10° dollars.

Total life cycle cost (undiscounted) for lag solution is 5.66
x 10° dollars.

—

I'he obvious conclusion 1s that building berths earlier in
the life cycle saves money in the long run. Anticipating
the violation of the level of service parameter (Wq)
reduces the life cycle cost due to the reductions in delay
cost.
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Conclusions About Analytic Queueing Models  [JT

Advantages:

- Good traceability of causality between variables
« Good only for first order approximations

 Easy to implement

Disadvantages:

« Too simple to analyze small changes in a complex system
« Cannot model transient behaviors very well
- Large errors are possible because secondary effects are neglected

« Limited to cases where PDF has a close form solution

J
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