

Runway Length Calculations Aircraft with Takeoff Weights less than 60,000 lbs

Runway Design Assumptions (FAA 150/5325-4b)

- For Aircraft with maximum takeoff weights less than 60,000 consult Chapters 2 and 3 of the FAAAC 150/5325-4B
- The procedures in the advisory circular also assume:
- No wind conditions
- Zero runway gradient
- Dry runway conditions
- Data is corrected to account for humidity

Advisory Circular

Subject: RUNWAY LENGTH REQUIREMENTS FOR AIRPORT DESIGN **Date:** 7/1/2005 **Initiated by:** AAS-100 **AC No:** 150/5325-4B **Change:**

1. PURPOSE. This Advisory Circular (AC) provides guidelines for airport designers and planners to determine recommended runway lengths for new runways or extensions to existing runways.

Critical Design Aircraft (FAA AC 150/5000-17)

- Both itinerant and local operations (excluding touch-and-go operations) count towards regular use
 - Itinerant trips starts at the airport and ends elsewhere
 - Local trip starts and ends at the airport
- U.S. Department of Transportation
 Federal Aviation
 Administration

 Subject: Critical Aircraft and Regular Use Determination

 Date: 6/20/2017
 Initiated By: APP-400

 AC No: 150/5000-17
 Initiated By: APP-400

- Criteria to be considered
 - Critical Aircraft for runway length (i.e., longest runway length required)
 - Critical Aircraft Runway Design Code (RDC) the combination of the most demanding AAC and ADG
 - Critical Aircraft or grouping of aircraft for runway length
 - Critical Aircraft or grouping of aircraft in the most demanding Taxiway Design Group (TDG)

The critical aircraft should operate 250 landings and 250 takeoffs (or 500 itinerant operations) at the airport

Steps in the Runway Length Analysis Procedure (5 steps)

- 1. Identify the list of potential critical airplanes
- 2. Identify the weights of the critical aircraft and associated weight class
 - If the aircraft MTOW < 60,000 then the method used is based on a "Family Grouping of Airplanes"
 - If the aircraft MTOW >= 60,000 then the method used is based on an "Individual analysis"
 - Regional Jets use the second method even if their weight is below 60,000 lb.
- 3. Use Table 1-1 and the critical aircraft in step 2 to decide on the recommended method for runway length required

Steps in the Runway Length Procedure (5 steps)

Table 1-1. Airplane Weight Categorization for Runway Length Requirements

Airplane Weight Category Maximum Certificated Takeoff Weight (MTOW)			Design Approach	Location of Design Guidelines
12,500 pounds (5,670 kg)	Approach Speeds less than		Family grouping of	Chapter 2;
or less	30 knots		small airplanes	Paragraph 203
	Approach Speeds of at least		Family grouping of	Chapter 2;
	30 knots but less than 50		small airplanes	Paragraph 204
	knots			
	Approach	With	Family grouping of	Chapter 2;
	Speeds of	Less than 10	small airplanes	Paragraph 205
	50 knots or	Passengers		Figure 2-1
	more	With	Family grouping of	Chapter 2;
		10 or more	small airplanes	Paragraph 205
		Passengers		Figure 2-2
Over 12,500 pounds (5,670 kg) but less than 60,000		Family grouping of large	Chapter 3;	
pounds (27,200 kg)		airplanes	Figures 3-1 or 3-2	
				and Tables 3-1 or 3-2
60,000 pounds (27,200 kg) or more or Regional Jets ²			Individual large airplane	Chapter 4; Airplane
			Manufacturer Websites	
			(Appendix 1)	

Note 1: When the design airplane's APM shows a longer runway length than what is shown in figure 3-2, use the airplane manufacturer's APM. However, users of an APM are to adhere to the design guidelines found in Chapter 4.

Note 2: All regional jets regardless of their MTOW are assigned to the 60,000 pounds (27,200 kg) or more weight category.

Source: FAA 150/5325-4b

Steps in the Runway Length Procedure (5 steps)

- 4. Select the recommended runway length from various runway lengths generated in step # 3
- 5. Apply adjustments (if applicable) to the runway length obtained in step # 4 for aircraft with maximum takeoff gross weights between 12,500 lbs and 60,000 lbs
 - Runway gradient
 - Wet pavement conditions

Definition of Primary Runway

- Most airports require only one primary runway
- Primary runways are designed and oriented so that 95% of the time the design crosswind components are not exceeded (more later in the course)
- However, sometimes multiple primary runways are needed for:
 - Capacity reasons
 - To accommodate forecasted growth
 - To mitigate noise impacts
- Design objective for additional primary runways is contained in Table 1-2 of the FAA AC 150/5325-4b

Table 1-2 in FAA AC 150/5325-4b

Table 1-2. Runway Length for Additional Primary Runways

Runway Service Type, User	Runway Length for Additional Primary Runway Equals	
Capacity Justification, Noise Mitigation, Regional Jet Service	100 % of the primary runway	
Separating Airplane Classes - Commuter, Turboprop, General Aviation, Air Taxis	Recommended runway length for the less demanding airplane design group or individual design airplane	

Table 1-3 in FAA AC 150/5325-4b

Table 1-3. Runway Length for Crosswind Runway

Runway Service	Runway Length for Crosswind Runway Equals
Scheduled ¹ Such as Commercial Service Airports	100 % of primary runway length when built for the same individual design airplane or airplane design group that uses the primary runway 100% of the recommended runway length determined for the lower crosswind capable airplanes using the primary runway
Non-Scheduled ² Such as General Aviation Airports	100% of the recommended runway length determined for the lower crosswind capable airplanes using the primary runway

Note 1: Transport service operated over routes pursuant to published flight schedules that are openly advertised with dates or times (or both) or otherwise made readily available to the general public or pursuant to mail contracts with the U.S. Postal Service (Bureau of Transportation Statistics, Department of Transportation (DOT)).

Note ²: Revenue flights, such as charter flights that are not operated in regular scheduled service, and all non-revenue flights incident to such flights (Bureau of Transportation Statistics, DOT). For Federally funded programs, such as AIP, there must be at least 500 annual itinerant operations and 100% of the class.

Runway Length Based on Declared Distance Concept

- New runways are expected to be designed according to the principles of Tables 1-1 and 1-2 in the AC 150/5325-4b
- Existing runways sometimes do not meet all new safety criteria
- The **Declared Distance Concept** provides a rational procedure to define the operational features of such runways
- We will discuss this procedure later in this course

Runway Length for Small Aircraft with Maximum Takeoff Weight < 12,500 lb (5,670 kg)

- Inputs to the procedure:
- Critical aircraft
- Approach speed (30% above the stalling speed)
- Number of passenger seats
- Airport elevation above mean sea level
- Mean daily maximum temperature of the hottest month of the year
- Use Figures 2-1 and 2-2 in AC 150/5325-4b
- No adjustment for runway gradient or wet pavement (e.g., landing performance)

The method for aircraft with Maximum Takeoff Weight < 12,500 lbs in TFAA AC 150/5325-4b will be replaced with SARLAT 2 (later this year)

Small Airplanes with Approach Speeds < 30 knots

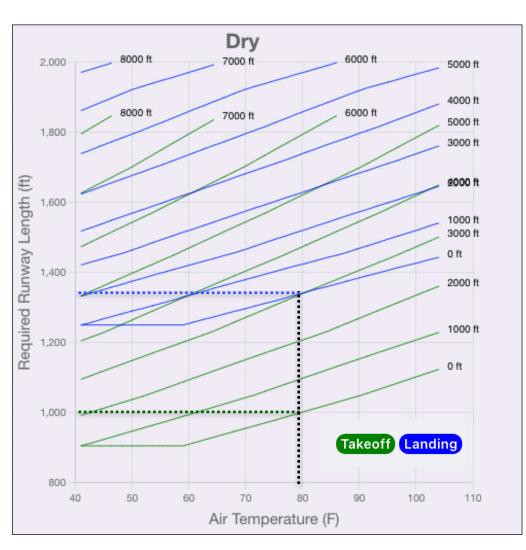
- This group includes ultralight aircraft
- Recommended runway 300 feet (92 meters) at mean sea level conditions
- Increase runway by 30 feet for every 1000 feet in airfield elevation (0.03 x airfield elevation)
- In the U.S. ultralights are regulated by FAR Part 103
- Web links:
- FAR 103 (https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-103)

Small Airplanes with Approach Speeds > 30 knots and < 50 knots

- This group includes Light
 Sport Aircraft (LSA)
- FAA recommends an 800-foot (244 meters) runway at mean sea level conditions
- Increase runway by 80 feet for every 1000 feet in airfield elevation (0.08 x airfield elevation)
- Web links:
- FAA LSA: https://www.faa.gov/aircraft/gen_av/light_sport

Light Sport Aircraft (LSA)

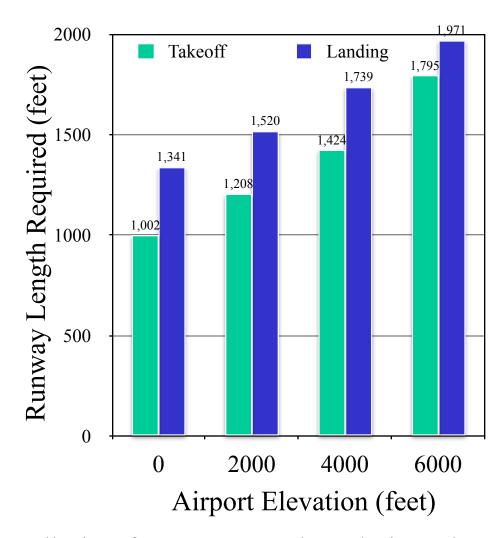
- Maximum takeoff gross weight:
 1,320 lbs (600 kilograms)
- 1,430 lbs if LSA is a seaplane
- Two seats
- 120 knots maximum cruise speed
- Maximum stall speed: 45 knots
- One engine
- Fixed pitch propeller
- Fixed landing gear



Virginia Tech Recommendation for LSA Aircraft

- Pased on recent analysis at Virginia Tech for the FAA we recommend:
 - 1,000 ft for takeoff at sea level and 80 deg. F.
 - 1,350 ft for landing at sea level at 80 deg. F.

Data for the Flight Design CTLS

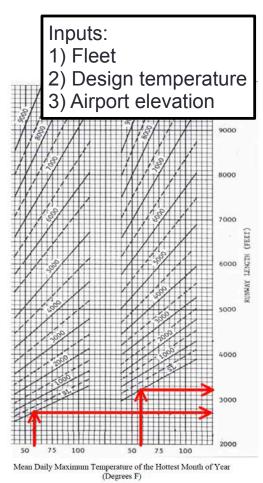

Small Aircraft Runway Length Analysis Tool

Analysis of LSA Aircraft performance Using SARLAT

Airport Elevation (feet)	Takeoff Runway Length (feet)	Landing Runway (feet)	Delta from Datum Point (%)
Sea Level	1,002	1,341	0
2,000	1,208	1,520	13.3
4,000	1,424	1,739	29.7
6,000	1,795	1,971	47.0

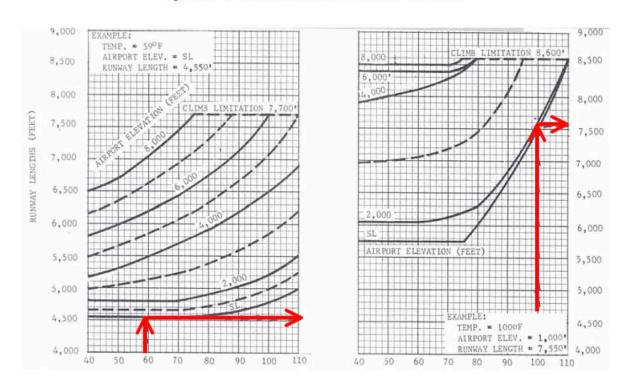
The actual LSA performance indicates an increase of 8% for each 1,000 feet in airport elevation

Small Aircraft Runway Length Analysis Tool



Small Airplanes with Approach Speeds > 50 knots or MTOW < 12,500 lb

- This group includes most of the General Aviation (GA) aircraft
- Use Figure 2-1 and 2-2 in the FAA AC 150/5325-4b
- Figure 2-1
 - Aircraft with less than 10 seats (excluding pilot and co-pilot)
 - Two family group designs (95% and 100% of the fleet)
- Figure 2-2
 - Aircraft with more than 10 seats (excluding pilot and copilot)

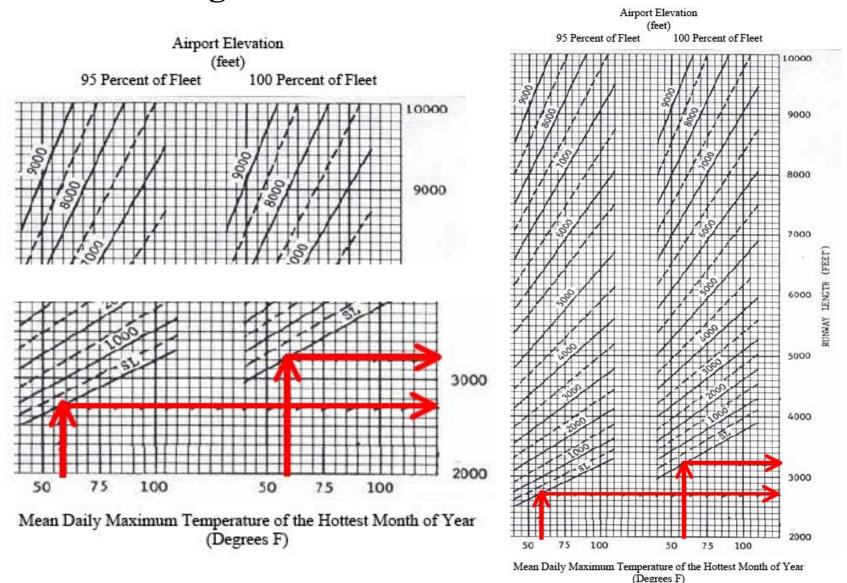


FAAAC 150/5325-4B Method to Estimate Runway Length

Aircraft with Max. Takeoff Weights
Up to 12,500 lbs.
(Chapter 2)

Figure 3-1. 75 Percent of Fleet at 60 or 90 Percent Useful Load

Mean Daily Maximum Temperature of Hottest Month of the Year in Degrees Fahrenheit


75 percent of feet at 60 percent useful load

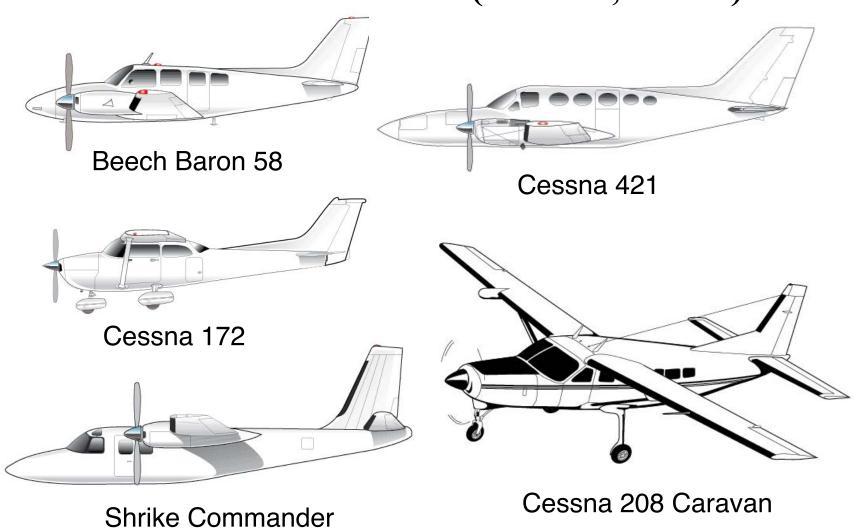
75 percent of feet at 90 percent useful load

Aircraft with Max. Takeoff Weights 12,501 to 60,000 lbs. (Chapter 3)

Figure 2-1 in AC 150/5325-4b

Selection of Percent of the Fleet

95 Percent of Fleet


- "This category applies to airports that are primarily intended to **serve medium size population communities** with a diversity of usage and a greater potential for increased aviation activities. Also included in this category are those airports that are primarily intended to serve low-activity"

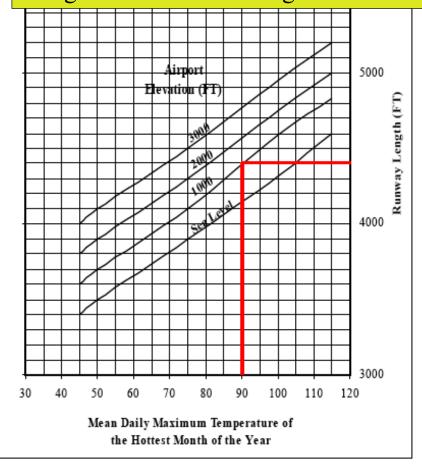
100 Percent of Fleet

 "This type of airport is primarily intended to serve communities located on the fringe of a metropolitan area or a relatively large population remote from a metropolitan area"

Small Aircraft < 10 seats (and <12,500 lbs)

Figure 2-2 in AC 150/5325-4b

Raytheon Beech King Air A100

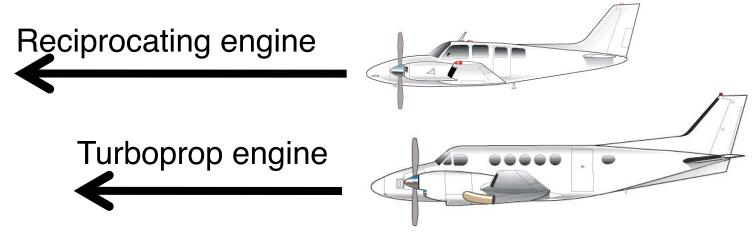

Raytheon B80 Queen Air Raytheon E90 King Air Raytheon B99 Airliner Raytheon A100 King Air (Raytheon formerly Beech Aircraft)

Britten-Norman Mark III-I Trilander

Mitsubishi MU-2L

Swearigen Merlin III-A Swearigen Merlin IV-A Swearigen Metro II

Representative Aircraft For airfield elevations above 3,000 feet (914 meters) use the 100% fleet graph in Figure 2-1 instead of Figure 2-2



(Degrees F)

Important Design Consideration

- For airfield elevations above 3,000 feet (914 meters) use the 100% fleet graph in Figure 2-1 instead of Figure 2-2
- Reason:
- Small aircraft in Figure 2-1 are have reciprocating engine technology that is more prone to "power" degradation with altitude that aircraft included in Figure 2-2

Runway length at high airport elevation

Representative Aircraft with More than 10 Seats

Raytheon Beechcraft King Air 360 ADG II and AAC B

Mitsubishi MU-2B 60 (Long) ADG I and AAC B

Assumptions in the Development of Curves (applies to curves in Figure 2-1 and 2-2)

- Curves shown in Figures 2-1 and 2-2 comply with Federal Aviation Regulations (FAR) Part 23
- FAR Part 23 applies to the certification of small aircraft
- Assume the following conditions:
 - Zero wind
 - MTOW or MALW
 - Airport elevation and temperature are parameters
- A 10% increase in the runway length values has been accounted for to compensate for humidity and runway gradient

Assumptions in the Development of Curves (applies to Figure 2-2)

- Figure 2-2 includes **accelerate and stop distance** calculations for aircraft with more than 10 seats
- Figure 2-1 does not include accelerate and stop distance criteria
- In general, takeoff is the critical maneuver to determine runway length

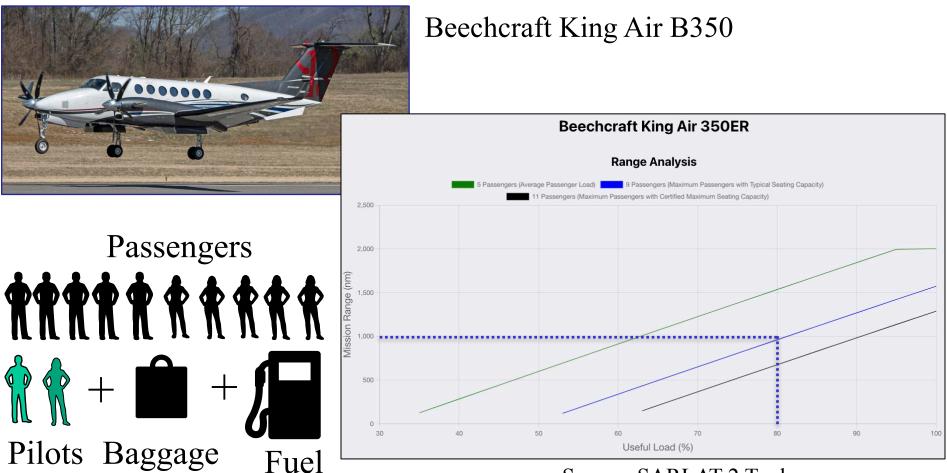
Runway Length for Small Aircraft with MTOW > 12,500 lb (5,670 kg) and less than 60,000 lb (27,200 kg)

- Inputs to the procedure:
 - Airport elevation (above mean sea level)
 - Mean daily maximum temperature of the hottest month of the year
 - Use Figures 3-1 and 3-2 in AC 150/5325-4b
 - Requires adjustment for runway gradient or wet pavement (e.g., landing performance)

Runway Length for Small Aircraft with MTOW > 12,500 lb (5,670 kg) and less than 60,000 lb (27,200 kg)

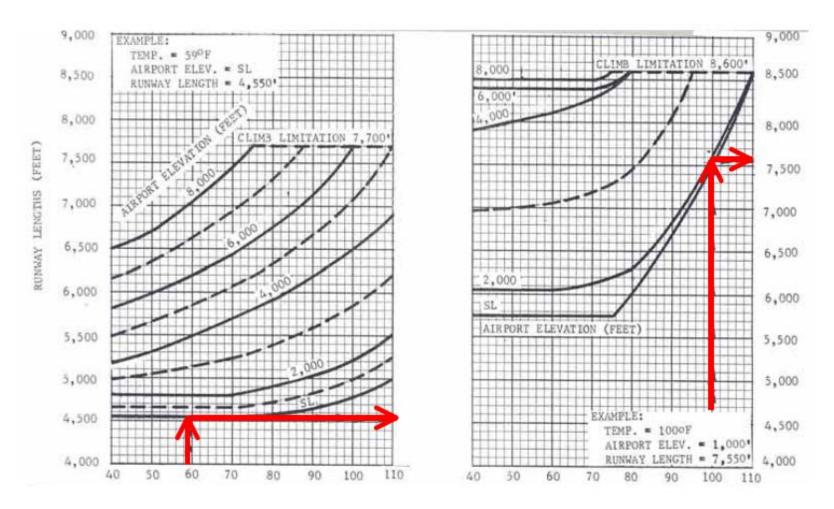
- Use Tables 3-1 and 3-2 to determine the design group to use
- Determine the useful load factor (between 60% and 90%)
- Above 5,000 feet (airport elevations) the runway lengths for these aircraft might be less than those for smaller aircraft < 12,500 lb
- Curves are limited to 8,000 feet (2,439 meters)
- For higher elevations consult the aircraft manufacturers
- This procedure does not include runway length for air carriers

Explanation of Useful Load


- Useful load is the weight an aircraft can carry including:
 - Pilot(s)
 - Passengers
 - Baggage
 - Cargo
 - Usable fuel

Source: SARLAT Tool

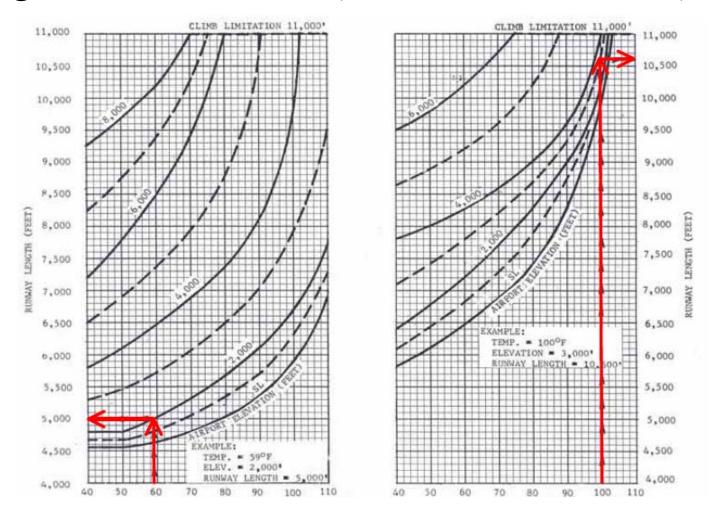
Useful Load and Mission Range



Source: SARLAT 2 Tool

The Beechcraft King Air B350ER can fly 1000 nm with nine passengers, two pilots, and fuel. The takeoff useful load is 80%.

Figure 3-1 75% of Fleet (60 and 90% Useful Load)


Mean Daily Maximum Temperature of Hottest Month of the Year in Degrees Fahrenheit

75 percent of feet at 60 percent useful load

75 percent of feet at 90 percent useful load

Figure 3-2 100% of Fleet (60 and 90% Useful Load)

Mean Daily Maximum Temperature of Hottest Month of the Year in Degrees Fahrenheit

100 percent of feet at 60 percent useful load

100 percent of feet at 90 percent useful load

Sample Aircraft in 75% of the Fleet

Manufacturer	Model
Aerospatiale	Sn-601 Corvette
Bae	125-700
Beech Jet	400A
Beech Jet	Premier I
Beech Jet	2000 Starship
Bombardier	Challenger 300
Cessna	500 Citation/501 Citation Sp
Cessna	Citation I/II/III
Cessna	525A Citation II (CJ-2)

Manufacturer	Model
Dassault	Falcon 10
Dassault	Falcon 20
Dassault	Falcon 50/50 EX
Dassault	Falcon 900/900B
Israel Aircraft Industries (IAI)	Jet Commander 1121
IAI	Westwind 1123/1124
Learjet	20 Series
Learjet	31/31A/31A ER
Learjet	35/35A/36/36A

Aircraft for Figure 3-1

Cessna Citation CJ2

Source: FAA AC 150/5325-4b

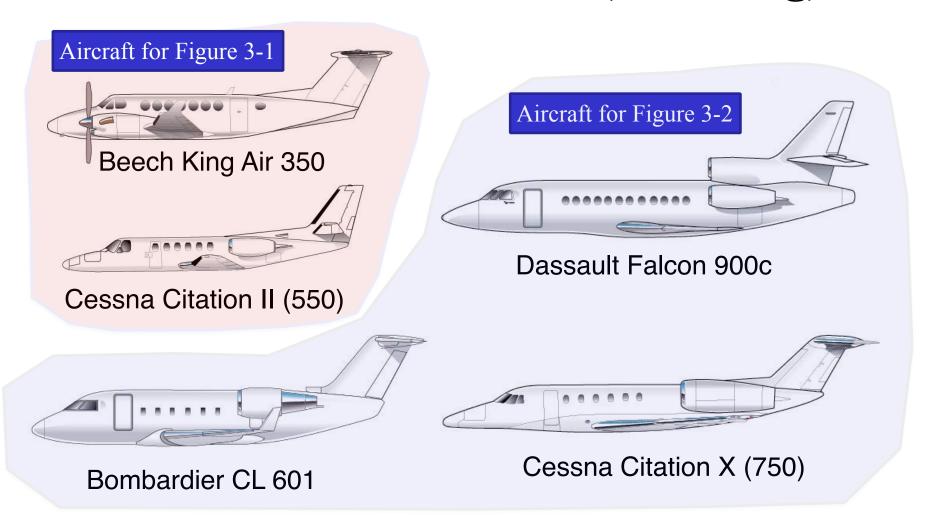
Bombardier Learjet 31A

Sample Aircraft in the Remaining 25% of the Fleet

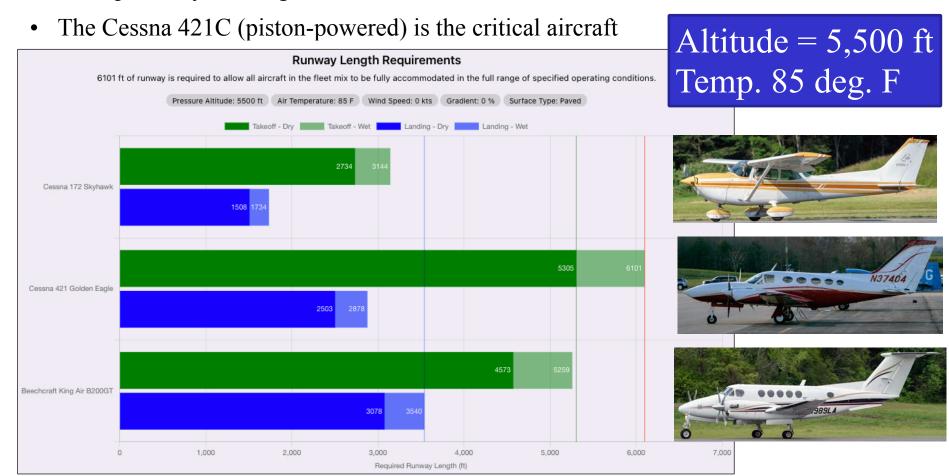
Manufacturer	Model
Bae	Corporate 800/1000
Bombardier	600 Challenger
Bombardier	601/601-3A/3ER Challenger
Bombardier	604 Challenger
Bombardier	BD-100 Continental
Cessna	S550 Citation S/II
Cessna	650 Citation III/IV
Cessna	750 Citation X
Dassault	Falcon 900C/900EX
Dassault	Falcon 2000/2000EX

Source: FAA AC 150/5325-4b

Aircraft for Figure 3-2



Aircraft MTOW > 12,500 lb. (5,670 kg) and less than 60,000 lb. (27,200 kg)


Runway Length Adjustments Small Aircraft MTOW > 12,500 lb (5,670 kg) and less than 60,000 lb (27,200 kg)

- Values shown in Figures 3-1 and 3-2 apply with zero wind conditions and dry runway pavements
- Effective gradient correction (takeoff case)
 - Increase runway length by 10 feet (3.05 meters) for every foot (0.305 meters) of runway elevation difference (low-high)
- Wet and slippery runway correction (landing case)
 - Increase values obtained using the 60% useful load by 15% (for turbojet powered aircraft) up to 5,500 feet whichever is less
 - Increase values obtained using the 90% useful load by 15% (for turbojet powered aircraft) up to 7,000 feet whichever is less

Final Note on Runway Length for Small Aircraft

- For high elevation airports, the performance of smaller aircraft below 12,500 lb may be critical
- Example analysis using the SARLAT tool.

Example: BCB Improvements

- Airport: BCB (Blacksburg)
- Issue: Improve the airport to serve 75% of the aircraft population < 60,000 lbs and 60% of useful load
 - Airport elevation = 2,132 feet
 - Mean daily maximum temperature of the hottest month of the year = 83 °F
 - Obtained from average high temperatures on the weather channel (or at NOAA)

Information about BCB Airport (source: www.airnav.com)

Virginia Tech/Montgomery Executive Airport

Blacksburg, Virginia, USA

GOING TO BLACKSBURG?

FAA INFORMATION EFFECTIVE 15 JANUARY 2009

Location

FAA Identifier: BCB

Lat/Long: 37-12-27.5000N / 080-24-28.2000W

37-12.458333N / 080-24.470000W

37.2076389 / -80.4078333

(estimated)

Elevation: 2132 ft. / 649.8 m (surveyed)

Variation: 06W (1985)

From city: 3 miles S of BLACKSBURG, VA

Time zone: UTC -5 (UTC -4 during Daylight Savings Time)

Zip code: 24060

Satellite View of BCB Airport in Spring 2019 (source: Google Maps)

BCB Mean Maximum Daily Temperature Profiles

(source: www.weather.com)

https://crt-climate-explorer.nemac.org/ climate_graphs/

BCB Runway Information in Spring 2019 (source: www.airnav.com)

Runway Information

Runway 12/30

Dimensions: 4539 x 100 ft. / 1383 x 30 m

Surface: asphalt, in fair condition

Runway edge lights: medium intensity

RUNWAY 12

Latitude: 37-12.629310N Longitude: 080-24.886423W

Elevation: 2112.7 ft. Gradient: 0.4% UP

Traffic pattern: left

Runway heading: 123 magnetic, 117 true

Markings: nonprecision, in fair condition

Visual slope indicator: 4-light PAPI on left (3.00 degrees glide path)

Approach lights: ODALS: omnidirectional approach lighting

system

Runway end identifier lights:

Touchdown point: yes, no lights

Instrument approach: LOC/DME

Obstructions: 24 ft. road, lighted, 600 ft. from runway, 309

ft. right of centerline, 16:1 slope to clear

RUNWAY 30

37-12.287662N 080-24.054668W

2131.7 ft.

0.4% DOWN

left

303 magnetic, 297 true

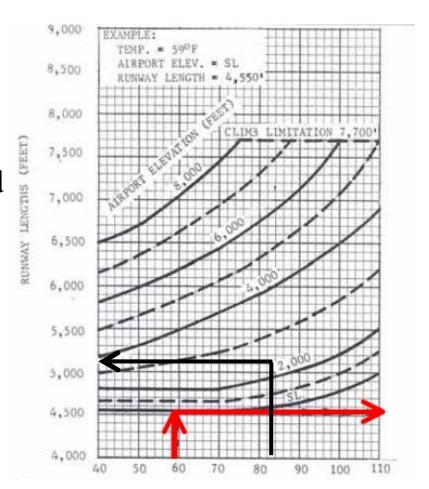
nonprecision, in fair condition

2-light PAPI on left (3.75 degrees glide

path)

NSTD

yes, no lights


12 ft. brush, 275 ft. from runway, 154 ft.

right of centerline, 6:1 slope to clear

Runway Length Calculation

- Use Figure 3-1 and 60% useful load curve
- Recall: 75% of the GA and corporate jet population is served by this analysis
- Runway length = 5,200 feet

Mean daily maximum temperature oF

Runway Length Estimation (BCB) Corrections

- Effective gradient correction (takeoff case)
 - Increase runway length by 10 feet (3.05 meters) for every foot (0.305 meters) of runway elevation difference (low-high)
 - 0.4% grade implies a delta elevation of around 18 feet
 - Increase Runway Length by 180 feet (or 5380 feet)
- Wet and slippery runway correction (landing case)
 - Increase values obtained using the 60% useful load by 15% (for turbojet powered aircraft) up to 5,500 feet whichever is less
 - Min (5980 feet, 5500 feet) = 5,500 feet

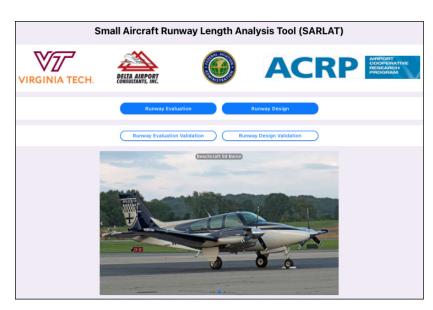
Runway Improvement at BCB

- BCB requires a 5,500 feet runway according to the design procedure
- Accommodates 75% of the aircraft population below 60,000 lb at 60% useful load factor
- This improvement would better serve a higher population of corporate jets in the U.S.
- During football games many small corporate jets operate in and out of the airport

Blacksburg
Montgomery
Executive
Airport (BCB)
ramp during a
football game


Satellite View of BCB Airport in Spring 2022 (source: Google Maps)

Small Aircraft Runway Analysis Tool (SARLAT)

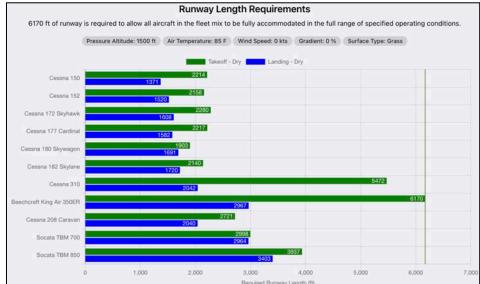

Computer Software Tool to Estimate Runway length for Small Aircraft

New FAA Guidance for Airport Projects Requires Using the Small Aircraft Runway Length Analysis Tool (SARLAT)

- A computer program developed at the Virginia Tech Air Transportation Systems Laboratory
- SARLAT includes detailed runway performance data for forty two representative small aircraft
 - Includes business jets weighing up to 76,000 lbs
 - Includes dozens of single-engine and multi-engine piston aircraft
 - Includes representative turboprop aircraft

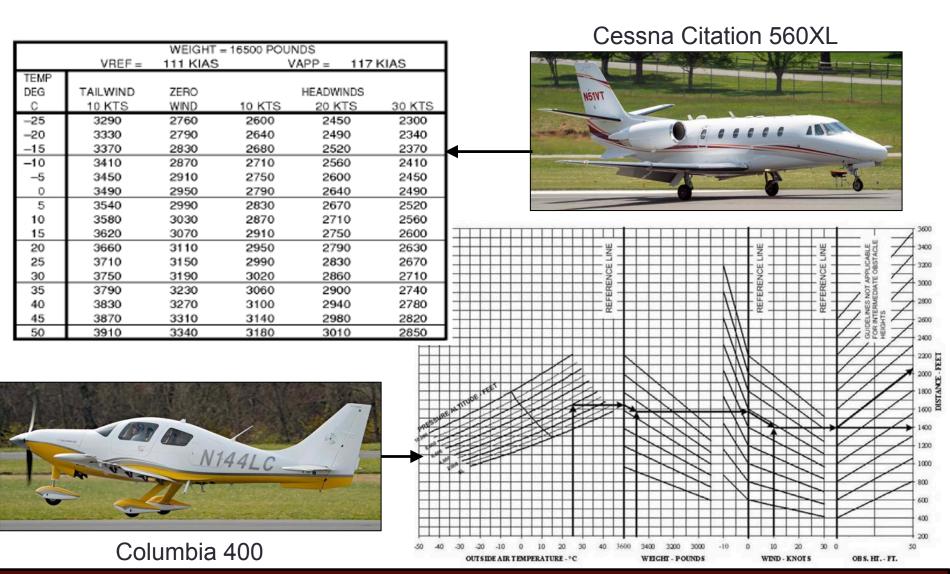
http://128.173.204.63/cee4674/ cee4674_pub/ SARLAT_Tool_UserGuide_128.pdf

Get the SARLAT User Guide at the link above



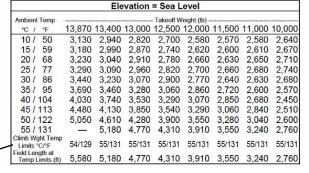
SARLAT Tool

- Stand-alone tool
- Consider individual aircraft performance
- Consider all airport design factors
 - Temperature
 - Wind conditions
 - Airport elevation
 - Aircraft climb limits (if applicable)
 - Aircraft useful load
- Produce runway length requirements for both takeoff and landing conditions

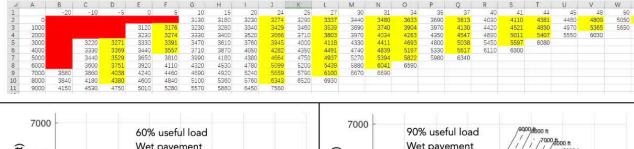

SARLAT uses Javascript and Matlab Runs on Windows and Mac OS systems

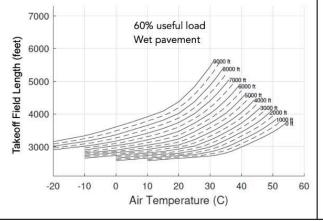
SARLAT 2: Data Gathering and Analysis

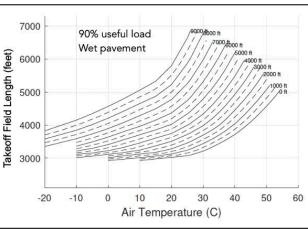
SARLAT 2: Translate Data Into a Common Graphical Format



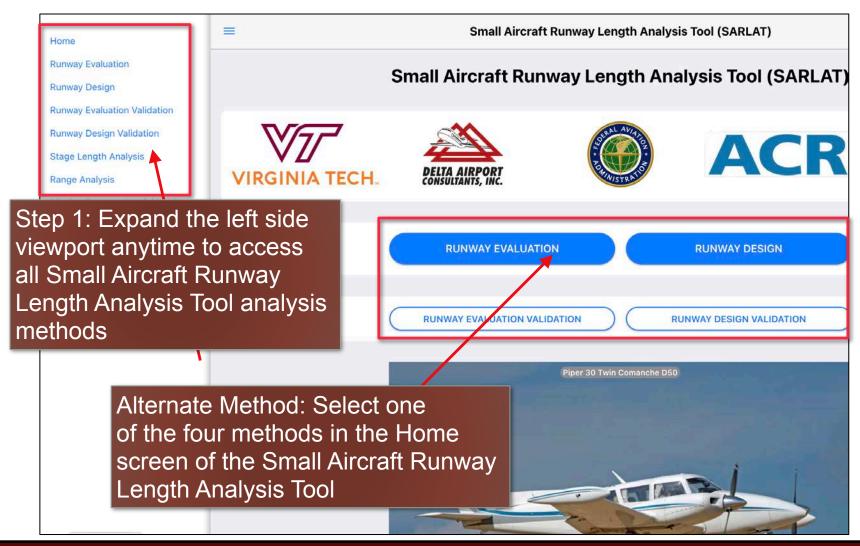
Cessna Citation Jet 3 Data


Climb Limits
Considered

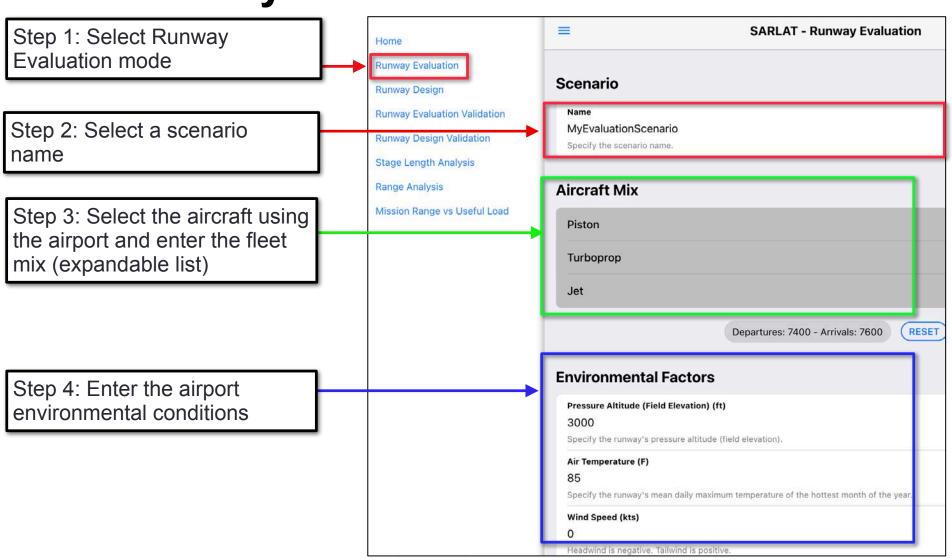

Intermediate Step


Final Presentation In SARLAT

		Ele	vation	= 3,000	Feet			J.
Ambient Temp				- Takeoff W	eight (lb) -			
°C / °F	13,870	13,400	13,000	12,500	12,000	11,500	11,000	10,000
-10 / 14	3,220	3,030	2,910	2,780	2,660	2,640	2,660	2,720
0 / 32	3,330	3,130	3,010	2,870	2,750	2,720	2,740	2,800
10 / 50	3,470	3,260	3,110	2,980	2,840	2,780	2,790	2,850
15 / 59	3,610	3,390	3,220	3,040	2,910	2,780	2,770	2,810
20 / 68	3,760	3,530	3,340	3,120	2,980	2,840	2,740	2,780
25 / 77	4,000	3,740	3,540	3,300	3,080	2,920	2,780	2,700
30 / 86	4,330	4,010	3,790	3,530	3,290	3,050	2,870	2,600
35 / 95	4,800	4,420	4,110	3,800	3,530	3,280	3,040	2,680
40 / 104	5,450	4,970	4,610	4,200	3,830	3,540	3,270	2,800
45 / 113	_	5,650	5,190	4,690	4,250	3,850	3,510	2,990
Climb Wght Temp Limits °C/°F	44/111	47/117	47/117	47/117	47/117	47/117	47/117	47/117
Field Length at Temp Limits (ft)	6,080	5,980	5,470	4,920	4,440	4,010	3,640	3,070

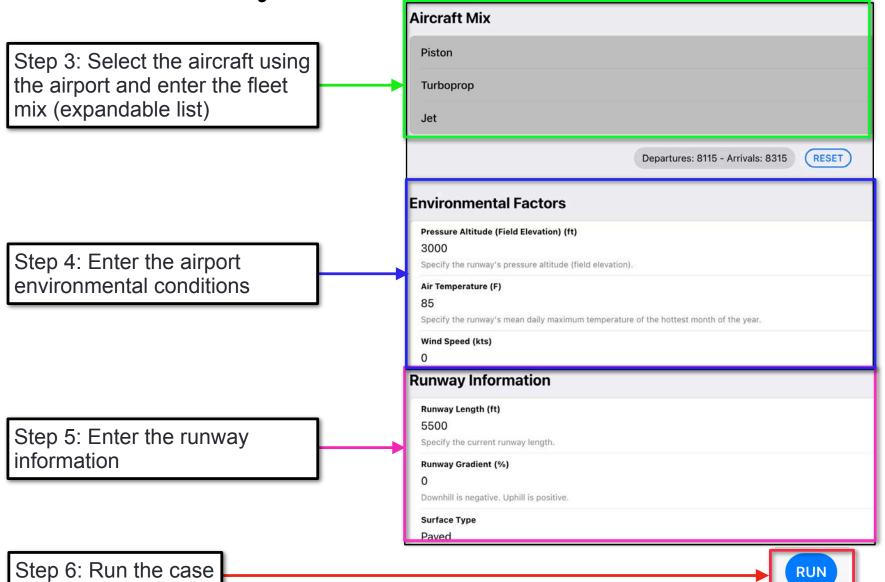


Small Aircraft Runway Length Analysis Tool Menu Structure and Interface

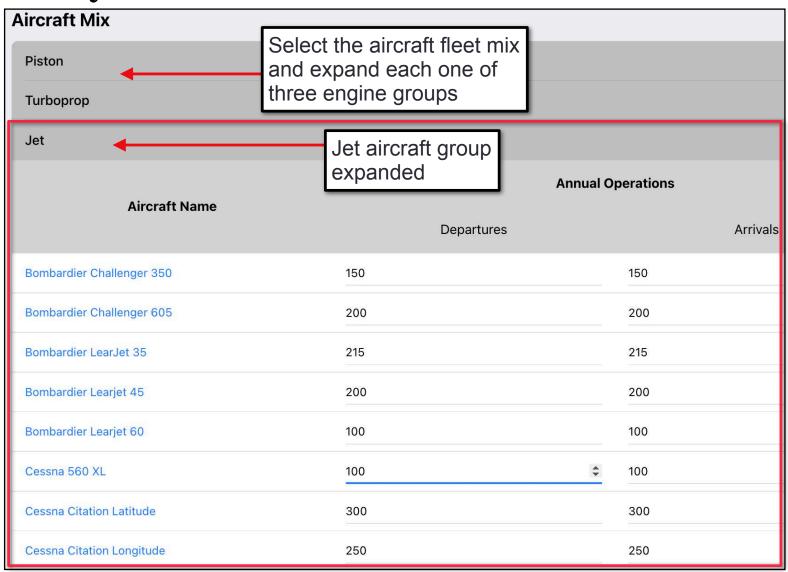


Runway Evaluation Mode

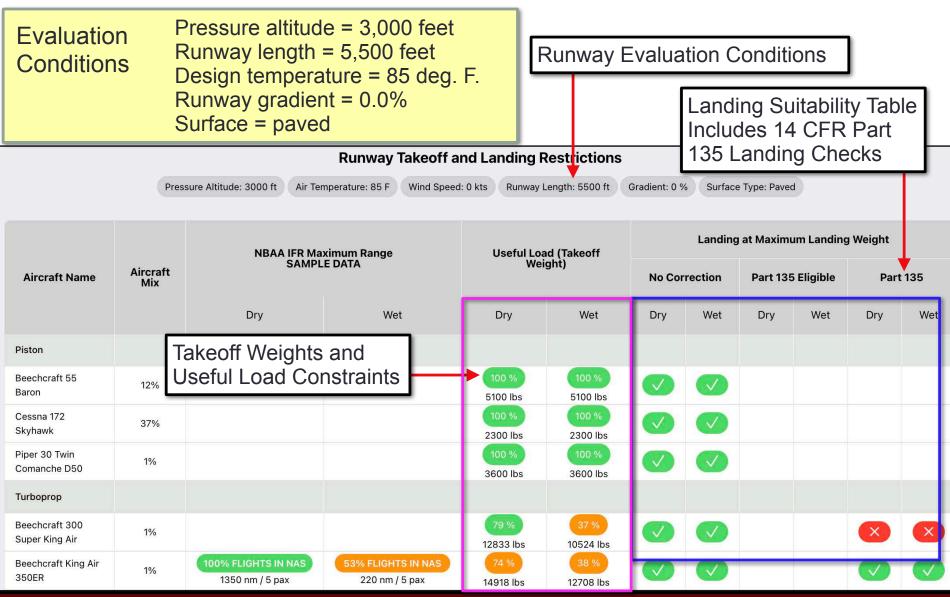
Objective: Determine if a group of aircraft can safely operate from an existing runway



Runway Evaluation Mode Interface



Runway Evaluation Mode Interface



Runway Evaluation Mode: Aircraft Fleet Mix

Runway Evaluation Output Interface

Runway Evaluation Output Interface

Evaluation Conditions

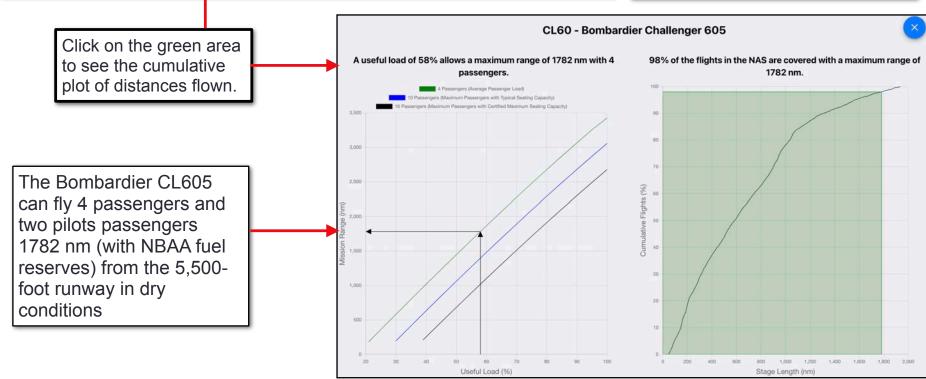
Pressure altitude = 3,000 feet Runway length = 5,500 feet Design temperature = 85 deg. F. Runway gradient = 0.0% Surface = paved

Aircraft useful load and mission range are reported as output

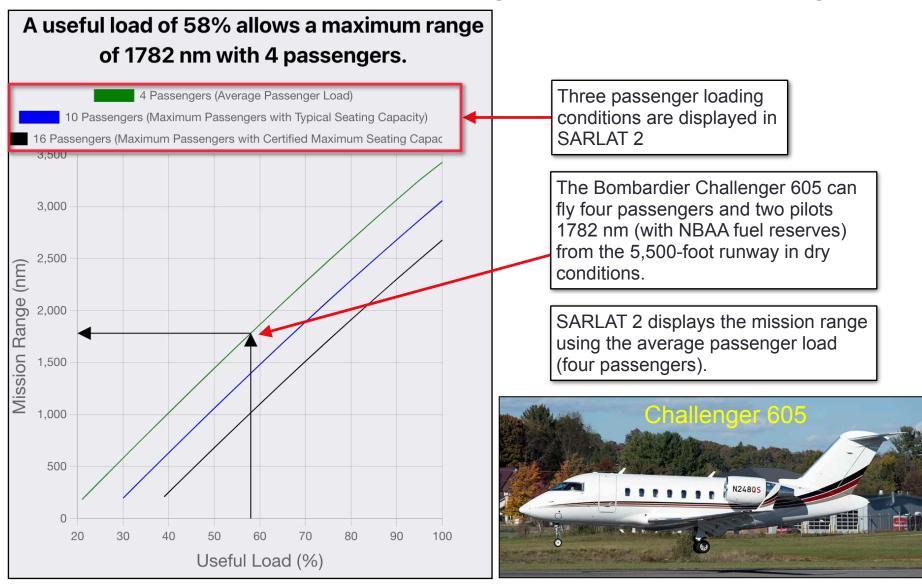
Runway Evaluation Conditions

The Bombardier Challenger 350 can operate from the 5500 ft. runway at 70% useful load (dry runway conditions)

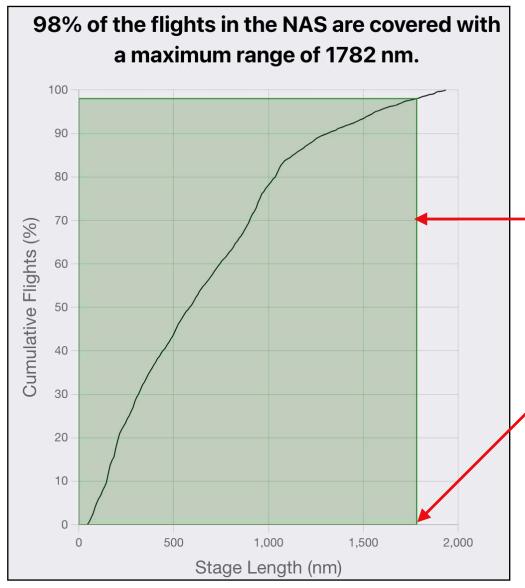
The Bombardier Learjet 45 can operate at 78% useful load in wet runway conditions. The Learjet 45 can fly 861 nm with five passengers plus two pilots from the 5500-foot runway (wet pavement conditions).



Evaluation Mode: Mission Range vs. Useful Load Diagram


The Bombardier Challenger 605 can takeoff at 58% useful load from a dry 5500-foot runway.

The Challenger 605 can fly four passengers and two pilots 1782 nm (with NBAA fuel reserves) from the 5,500-foot runway in dry conditions.



Evaluation Model: Mission Range vs. Useful Load Diagram

Evaluation Model: Cumulative Flights Coverage

SARLAT 2 displays the cumulative flights in the National Airspace System considering the mission stage length for the flight.

The Bombardier CL605 with a mission range of 1782 nm covers 98% of the historical flights performed in the National Airspace System.

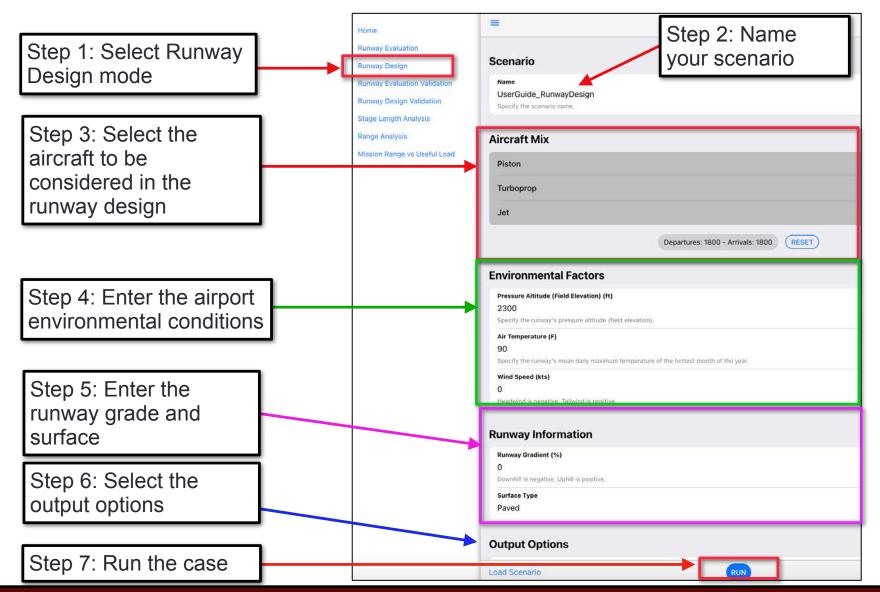
The Bombardier CL605 can fly four passengers and two pilots 1782 nm (with NBAA fuel reserves) from the 5,500-foot runway in dry conditions.

Runway Evaluation: Aircraft Data Table

Aircraft table with general information about each aircraft modeled in SARLAT 2.

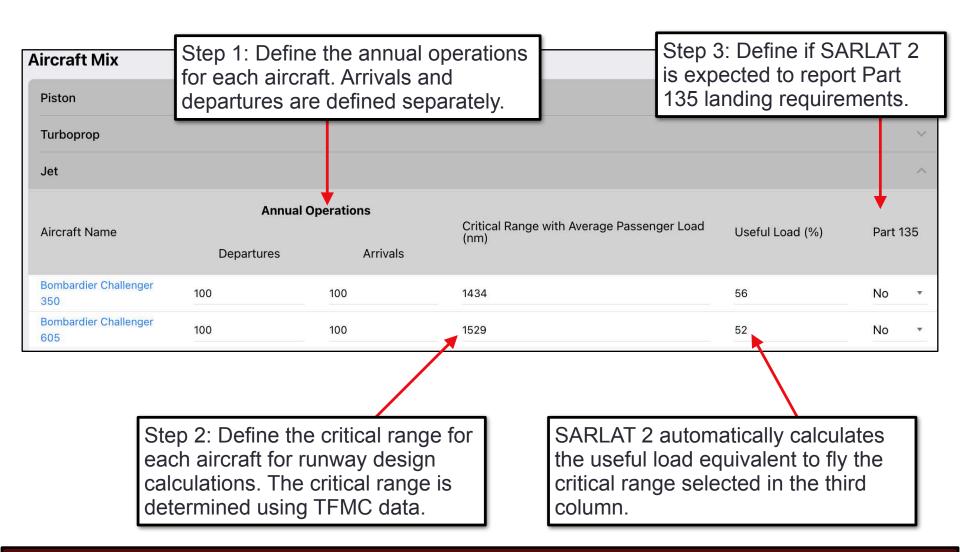
Information includes engine type, aircraft design group, aircraft approach category, operating empty weight, useful load, maximum takeoff weight, maximum allowable landing weight, takeoff flap setting used in SARLAT 2, landing flap setting used in SARLAT 2, and the criteria for the takeoff distance estimate (e.g., accelerate-stop distance, takeoff distance, etc.)

Aircraft Name	FAA Type Designator	Engine Type	Aircraft Design Group (ADG)	Aircraft Approach Category (AAC)	Weight Category	Operating Empty Weight (OEW)	Useful Load	Maximum Takeoff Weight (MTOW)	Maximum Allowable Landing Weight (MALW)	Takeoff Flap Settings	Landing Flap Settings	Takeoff Distance
Piston												
Beechcraft 55 Baron	BE55	Piston	Ę.	В	т	3236 lbs	1864 lbs	5100 lbs	5100 lbs	Up	Down	Accelerate stop distance
Cessna 172 Skyhawk	C172	Piston	Ĕ	Α	s	1419 lbs	881 lbs	2300 lbs	2300 lbs	Up	40°	Takeoff distance (short field)
Piper 30 Twin Comanche D50	PA30	Piston	Ĕ	Α	T	2160 lbs	1440 lbs	3600 lbs	3600 lbs	15°	27°	Takeoff over 50ft obstacle
Turboprop												
Beechcraft 300 Super King Air	BE30	Turboprop	ж	В	L	8488 lbs	5512 lbs	14000 lbs	14000 lbs	0°	Down	Accelerate stop distance
Beechcraft King Air 350ER	B350	Turboprop	£0.	В	L	10385 lbs	6115 lbs	16500 lbs	15675 lbs	Approach	Down	Takeoff field length



Runway Design Mode

Objective: Estimate the unconstrained runway length required by a known aircraft fleet mix



Runway Design Mode Interface

Runway Design Mode: Fleet Mix Parameters for Jet-Powered Aircraft

Runway Design Graphical Output

Design Conditions

Pressure altitude = 2,300 feet
Design temperature = 90 deg. F.
Useful loads determined by the critical
length flown by each aircraft
Wind speed = 0 knots
Runway gradient = 0%

- Provides a graphical output of runway length requirements for each aircraft
- The Bombardier Challenger 605 is the critical aircraft in this example.

Runway Design Conditions

The Bombardier Challenger 605 requires 4,970 feet of runway for takeoff (dry pavement) Round to 5,000 feet.

5,726 feet of runway needed with wet pavement Rounded to 5,700 feet.

Runway Design Table Output

Design Conditions

Pressure altitude = 2,300 feet Design temperature = 90 deg. F. Wind speed = 0 knots Runway gradient = 0%

- Provides a table output of runway length requirements for each aircraft
- Two takeoff conditions provided (wet/dry)
- Multiple landing conditions provided (wet, dry and Part 135)

		Takeoff (ft)		Landing (ft)						
Aircraft Name	Useful Load (%)			No Correction		Part 135 Eligible		Part 135		
		Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	
Piston										
Beechcraft 58 Baron	100	2685	3088	2802	3222					
Cessna 177 Cardinal	100	1953	2246	1355	1558					
Turboprop										
Beechcraft King Air 350ER	50	4928	5667	2931	3371					
Beechcraft King Air B200GT	78	3913	4500	2736	3146					
Jet										
Bombardier Challenger 350	56	4810	5532	2992	3441	Landi	og dieter	200 011	nut 1	
Bombardier Challenger 605	52	4979	5726	3122	3590	Landii	ng distar	ice out	pui	

Takeoff distance output

Critical Aircraft Considering Runway Design Parameters

Design Conditions

Pressure altitude = 2,300 feet Design temperature = 90 deg. F. Wind speed = 0 knots Runway gradient = 0%

- Provides a table output of runway length requirements for each aircraft
- Shows the cumulative annual operations for all aircraft sorted from the highest to the smallest runway length

Beechcraft Kin	g Air 350ER is th	he critical aircraft	and requires 4928 f	t of runway to be fu	illy accommoda	ted in the full range	of specified operating	conditions.	
Aircraft Name	Engine Type	Aircraft Design Group (ADG)	Aircraft Approach Category (AAC)	Taxiway Design Group (TDG)	Useful Load (%)	Annual Operations	Cumulative Annual Operations	Dry Takeoff (ft)	Wet Landing (ft)
Bombardier Challenger 505	Jet	II	C	1B	52	200	200	4979	3590
Beechcraft King Air B50ER	Turboprop	ii.	В	2A	50	400	600	4928	3371
Bombardier Challenger B50	Jet	11	С	1B	56	200	800	4810	3441
Cessna 560 KL	Jet	Ш	В	1B	70	300	1100	3930	4076
Cessna Citation .atitude	Jet	Ш	В	1B	70	250	1350	4047	3156
Cessna Citation M2	Jet	i	В	1A	80	480	1830	3978	3399
Beechcraft King Air B200GT	Turboprop	П	В	2A	78	400	2230	3913	3146
Beechcraft 88 Baron	Piston	1	В	1A	100	600	2830	2685	3222
Cessna 177	Piston	ű	Α	1A	100	400	3230	1953	1558

The Beechcraft King Air B350ER is the critical aircraft and requires 4,928 feet of runway for takeoff (dry pavement) Round to 4,900 feet.

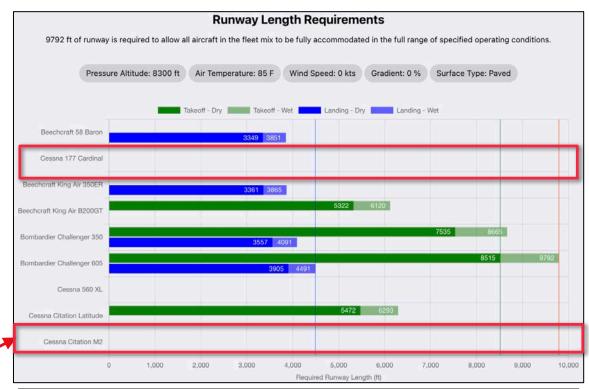
The critical aircraft for runway length requirement is the first aircraft with 500 or more annual operations (highlighted in yellow).

Critical Aircraft According to Other Design Parameters

Design Conditions Pressure altitude = 2,300 feet Design temperature = 90 deg. F. Wind speed = 0 knots Runway gradient = 0%

- For the example shown:
- The critical aircraft according to ADG group is II (the Challenger 605)
- The critical aircraft according to AAC group is C (the Challenger 605)
- Runway Design Code (RDC) is C-II
- The critical aircraft for Taxiway Design Group (TDG) is 2A (the King Air B350ER)

Group	Critical Group
Aircraft Design Group (ADG)	11
Aircraft Approach Category (AAC)	С
Runway Design Code (RDC)	C-II
Taxiway Design Group (TDG)	2A



Infeasible Operating Conditions in the Runway Design Mode

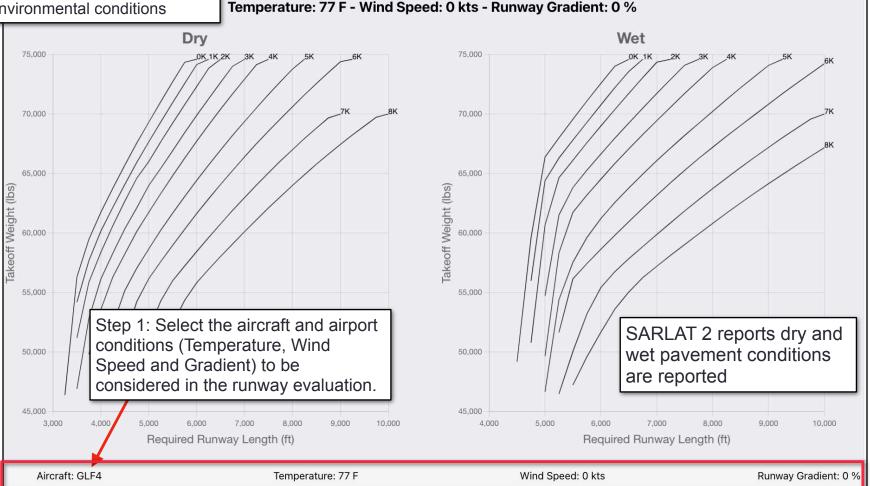
Example:

- Demanding airport design conditions
- 8300 feet pressure altitude
- 85 deg. F. design temperature

Aircraft not reported in bar plot cannot operate at the airport design conditions

Aircraft Name	Error					
Beechcraft 58 Baron	Temperature is above maximum takeoff temperature.					
Cessna 177 Cardinal	Altitude is above maximum takeoff altitude.					
Cessna 177 Cardinal	Altitude is above maximum takeoff altitude.					
Beechcraft King Air 350ER	Temperature is above maximum takeoff temperature.					
Beechcraft King Air B200GT	Temperature is above maximum takeoff temperature.					
Cessna 560 XL	Temperature is above maximum takeoff temperature.					

Runway Evaluation Validation Mode


Objective: Provides a graphical depiction of aircraft takeoff weight and runway length required for various design parameters (temperature, runway grade, and wind speed)

Runway Evaluation Validation Mode Plots

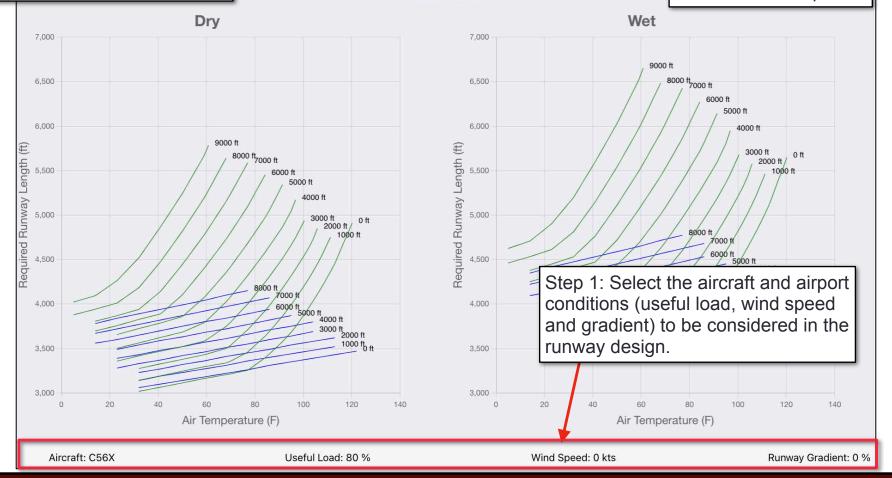
Plot shows the aircraft takeoff weight and runway length required for selected airport environmental conditions

GLF4 - Gulfstream G450

Runway Design Validation Mode

Objective: Provides a graphical depiction of aircraft takeoff weight and runway length required for various design parameters (temperature, runway grade, and useful load

Runway Design Validation Mode Plots


Plot shows the uncorrected runway length (for takeoff and landing) as a function of pressure altitude and airfield temperature

C56X - Cessna 560 XL

Useful Load: 80 % - Wind Speed: 0 kts - Runway Gradient: 0 %

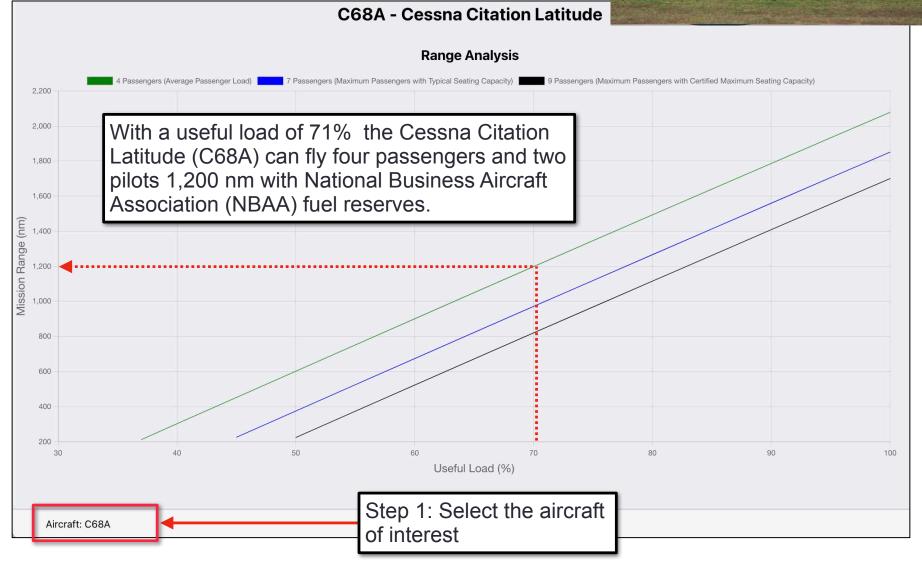
Takeoff Landing

Dry and Wet pavement conditions are reported


Aircraft Stage Length Analysis

Objective: Provides a graphical information of the cumulative number flights versus distance flown in the National Airspace System

Stage Length Analysis


Aircraft Range Analysis

Objective: Provides a graphical information of useful load and mission distance flown for jet-powered aircraft and turboprops whose maximum takeoff gross weight is 12,500 lbs. or more.

Aircraft Range Analysis

Exporting and Saving Scenario Runs

- SARLAT can export data for use in spreadsheets or the clipboard
- SARLAT can load saved scenarios
- SARLAT can save the graphical output produced in Portable Graphics Format (PNG)
- SARLAT exports table results in two formats:
 - Clipboard
 - Excel

Runway Design Mode

Objective: Estimate the unconstrained runway length required by a known aircraft fleet mix

Example: Virginia Tech Airport Runway Extension Using SARLAT 2

Aircraft	Departures/ Arrivals	Useful Load (%)	Engine Type
Cessna 172	3000/3000	100	Piston
Beechcraft King Air B350ER	400 / 400	70	Turboprop
Cessna Citation Latitude	350/350	80	Jet
Cessna 560XL	400 / 400	80	Jet
Bombardier Challenger 350	350/350	70	Jet

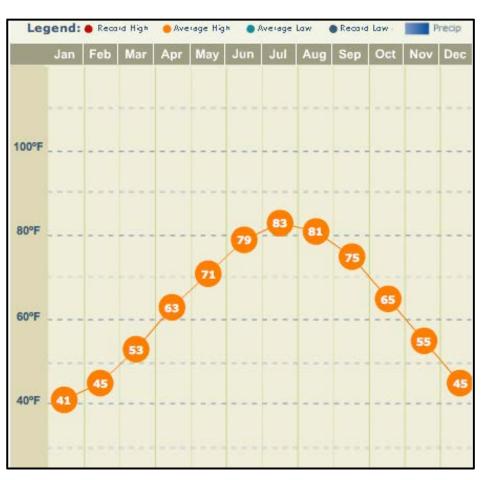
Example: Virginia Tech Airport Runway Extension Using SARLAT 2

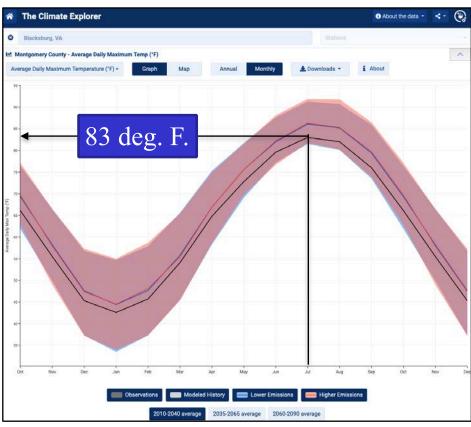
• BCB Airport in 2019

- Runway length 4,539 feet
- Paved
- 0.4% grade

BCB Airport in 2021

- Runway length 5,500 feet
- Paved
- 0.4% partial runway




Satellite View of BCB Airport in Spring 2019 (source: Google Maps)

BCB Mean Maximum Daily Temperature Profiles

https://crt-climate-explorer.nemac.org/ climate graphs/

(source: www.weather.com)

86 degrees Fahrenheit considering higher emissions

BCB Runway Information in Spring 2019 (source: www.airnav.com)

Runway Information

Runway 12/30

Dimensions: 4539 x 100 ft. / 1383 x 30 m

Surface: asphalt, in fair condition

Runway edge lights: medium intensity

RUNWAY 12

Latitude: 37-12.629310N 37-12.287662N Longitude: 080-24.886423W 080-24.054668W

Elevation: 2112.7 ft. 2131.7 ft. Gradient: 0.4% UP 0.4% DOWN

Traffic pattern: left left

Runway heading: 123 magnetic, 117 true 303 magnetic, 297 true

Markings: nonprecision, in fair condition nonprecision, in fair condition

Visual slope indicator: 4-light PAPI on left (3.00 degrees glide path) 2-light PAPI on left (3.75 degrees glide

path) NSTD

RUNWAY 30

Approach lights: ODALS: omnidirectional approach lighting

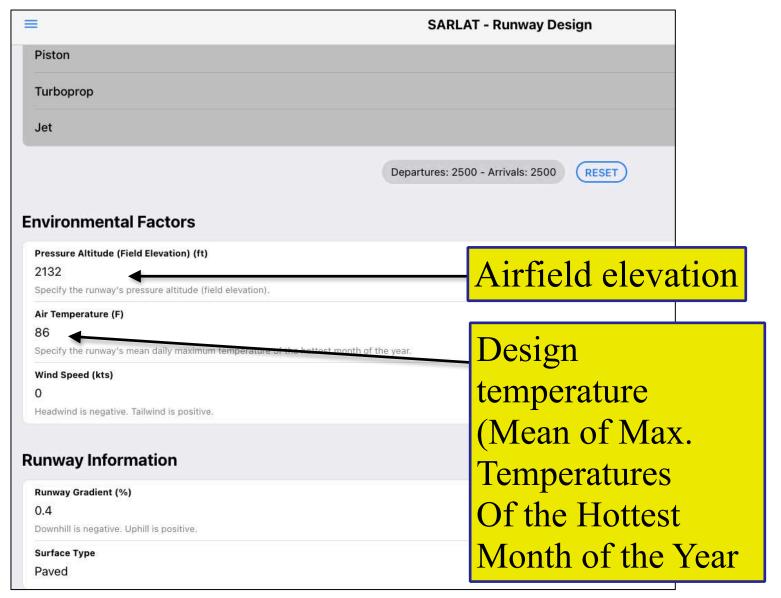
system

Runway end identifier lights: yes

Touchdown point: yes, no lights yes, no lights

Instrument approach: LOC/DME

Obstructions: 24 ft. road, lighted, 600 ft. from runway, 309


ft. right of centerline, 16:1 slope to clear

 $12~\mathrm{ft.}$ brush, $275~\mathrm{ft.}$ from runway, $154~\mathrm{ft.}$

right of centerline, 6:1 slope to clear

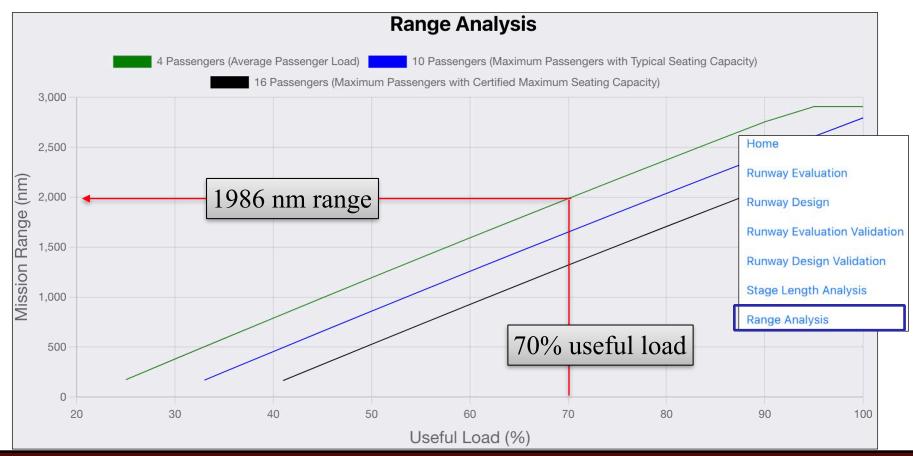


SARLAT 2 Analysis (Design Case)

SARLAT 2 Analysis

Virginia Tech Airport Analysis

- The Bombardier Challenger 350 (operated at 70% helpful load) requires 5,500 feet of runway (dry takeoff)
 - We usually round the runway length to the nearest 100 feet
- During the runway extension project at BCB, the runway was extended to 5,500 feet using the old analysis method.


Virginia Tech Airport Analysis: Table of Results

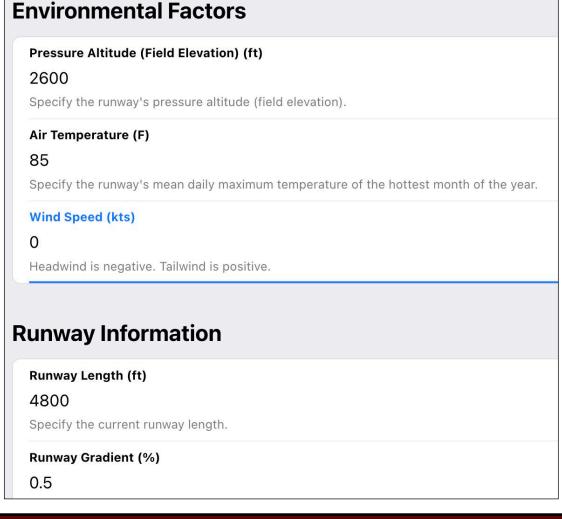
		Takeoff (ft)		Landing (ft)					
Aircraft Name	Useful Load (%)			No Correction		Part 135 Eligible		Part 135	
		Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
Piston									
Cessna 172 Skyhawk	85	1823	2096	1375	1581				
Turboprop									
Beechcraft King Air 350ER	70	5360	6164	2908	3344				
Jet						Critical aircraft			1 .1
Bombardier Challenger 350	70	5488	6311	2961	3405 ◀	From a runway lengtl view point			length
Cessna 560 XL	80	4276	4917	3505	4031				
Cessna Citation Latitude	80	4452	5120	2719	3127				

Virginia Tech Airport Analysis (2)

• Departing the Virginia Tech Montgomery Executive Airport, the Bombardier Challenger 350 can carry two pilots and four passsengers (with 70% useful load)

Runway Evaluation Mode

Objective: Determine if a group of aircraft can safely operate from an existing runway


Example: Runway Evaluation Example Using SARLAT 2

Aircraft	Departures/Arrivals	Engine Type
Beechcraft Baron 58	2100 / 2100	Piston
Beechcraft King Air B200GT	400 / 400	Turboprop
Cessna Citation Jet 1	400 / 400	Jet
Bombardier Challenger 350	350/350	Jet

Example: Runway Evaluation Example Using SARLAT 2

- Existing runway length 4800 feet
- Airfield elevation 2600 feet
- Design temperature (mean of maximum temperatures of the hottest month of the year) - 85 degrees. Fahrenheit
- Runway grade 0.5%

Runway Evaluation Example Using SARLAT 2

Pressure Altitu	ude: 2600 ft	Air Temperature: 85 F Wind	I Speed: 0 kts Runway Lengt	h: 4800 ft G	Fradient: 0.5 %	Surface ²	Type: Paved
		NBAA IFR Ma	Useful Load (Takeoff		Landing a		
Aircraft Name	Aircraft Mix	NDAA II K Ma	All Range	Weight)		No Correction	
		Dry	Wet	Dry	Wet	Dry	Wet
Piston							
Beechcraft 58 Baron	64%			100 % 5400 lbs	100 % 5400 lbs	V	
Turboprop							
Beechcraft King Air B200GT	12%	100 % FLIGHTS IN NAS 891 nm / 4 pax	100 % FLIGHTS IN NAS 891 nm / 4 pax	100 % 12500 lbs	100 % 12500 lbs		
Jet							
Bombardier Challenger 350	12%	70 % FLIGHTS IN NAS 790 nm / 4 pax		40 % 31190 lbs	×		
Cessna CitationJet 1	12%	100 % FLIGHTS IN NAS 895 nm / 3 pax	89 % FLIGHTS IN NAS 615 nm / 3 pax	85 % 9873 lbs	70 % 9373 lbs		

Runway Evaluation Example Using SARLAT 2

• The Bombardier Challenger 350 can operate from the 4800-foot runway at 40% useful load

• With 40% useful load, the Challenger 350 can fly 790 nm with four passengers and two pilots \

			\				
Aircraft Name	Aircraft Mix	NBAA IFR Max	Useful Loa Wei	d (Takeoff ght)	No Coi	rection	
		Dry	Wet	Dry	Wet	Dry	Wet
Bombardier Challenger 350	12%	70 % FLIGHTS IN NAS 790 nm / 4 pax		40 % 31190 lbs	X		
Cessna CitationJet 1	12%	100 % FLIGHTS IN NAS 895 nm / 3 pax	89 % FLIGHTS IN NAS 615 nm / 3 pax	85 % 9873 lbs	70 % 9373 lbs		

Runway Evaluation Example Using SARLAT 2

- The Bombardier Challenger 350 can operate from a dry 4800-foot runway at 40% useful load
- The Challenger 350 can fly 790 nm distance which covers 70% of the flights in the National Airspace System (NAS)

Aircraft Name	Aircraft Mix	NBAA IFR M	NBAA IFR Maximum Range		NBAA IFR Maximum Range Useful Load (Takeo Weight)			No Correction	
		Dry	Wet	Dry	Wet	Dry	Wet		
Bombardier Challenger 350	12%	70 % FLIGHTS IN NAS 790 nm / 4 pax		40 % 31190 lbs	X				
Cessna CitationJet 1	12%	100 % FLIGHTS IN NAS 895 nm / 3 pax	89 % FLIGHTS IN NAS 615 nm / 3 pax	85 % 9873 lbs	70 % 9373 lbs	V			