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UAM airport demand 
UAM cargo demand 
UAM flight routes

UAM vehicle 
characteristics: 

Aircraft range 
Payload 
Battery life 
Wing loading 
Maximum speed 
Aircraft size
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Outline of the Presentation

• An integrated approach to model UAM demand 
• UAM landing site models 

• Vertiport land requirements 
• Vertiport cost analysis 
• Vertiport capacity  

• UAM vehicle cost models 
• UAM demand generation 

• Multi-mode model calibration and applications 
• Commuter demand 
• Airport demand
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UAM vehicle 
characteristics: 

Aircraft range 
Payload 
Battery life 
Operational speed 
Aircraft size

Output of Integrated UAM 
Model 

• UAM commuter demand 

• UAM airport demand 

• UAM cargo demand 

• UAM flight routes UAM Demand  
Models

Life-Cycle 
Cost Model

Feedback

Aircraft	
Development	
Cost	Model	

Cost per passenger-mile

Integrated UAM Systems 
Analysis Model

UAM Unit 
Cost

UAM Landing 
Site Cost Model

4

Airspace	
Restrictions	in	
Urban	Areas
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UAM Areas of Study
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Northern California 
Study 1: Commuter Demand Potential 
Study 2: Vertiport Capacity 
Study 3: Noise Estimation

Southern California 
Study 1: Airport Access Trip 
UAM Demand (LAX)

Dallas-Fort Worth 
Study 1: Airport Access Trip UAM 
Demand 
with Airspace Restrictions 
Study 2: Noise Estimation

New York 
Study 1: Commuter UAM 
Demand with Airspace 
Restrictions

Miami 
Study 1: Commuter 
UAM Demand
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UAM Landing Site Placement Model,  
Landing Site Space Requirements, and 

Landing Site Cost Model
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Demand-Driven, Iterative UAM Landing Site 
Vertiport Location Method
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UAM Landing Site Space Requirements
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Landin
g Pads

Parking 
Stalls

Landing Pad 
Safety Area 

(acres)

Hover Taxi 
Operation

Hover Taxi 
Operation

Parking Stall Area 
(acres)

Total Area (acres)

1 0 0.25 0.00 0.25

1 1 0.25 0.12 0.38

1 2 0.25 0.43 0.68

1 3 0.25 0.71 0.96

1 4 0.25 0.86 1.11

1 5 0.25 1.07 1.32

1 6* 0.46 1.50 1.95

1 7* 0.46 1.73 2.18

1 8* 0.46 1.96 2.41

• Estimated UAM landing site requirements for various configurations 

• Number of landing pads 

• Number of parking positions

Single Pad UAM landing Site Requirements

* Configurations with six or more parking stalls use dual taxi lanes and elongated FATO areas for added flexibility. 
The calculations assume an equivalent rotor diameter (RD) of 43 feet. 
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UAM Landing Site Life-Cycle Cost Model
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Model developed  in STELLA Author

The building blocks of the life-
cycle cost model include the 
following: 

• Landing area type (vacant 
land, rooftop, parking lot) 

• Critical vehicle dimensions  
• Number of landing pads 
• Number of parking stalls 
• Number of charging 

stations 
• Staffing of landing site 
• Lounge areas for waiting 

passengers 
• Lighting requirements 
• Number of hours of 

operation per day for the 
landing site) 

• Landing fees 
• Percent subsidy to build the 

landing site
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UAM Vertiport Capacity  
and Cost Analysis
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Stochastic  Queueing Model  
with: 
1 Landing Pad 
8 Parking Positions 
5 Minute Service Time 
15 Minute Recharging Time 
1 minute taxi-in time 
1 minute taxi-out time
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UAM Vehicle Development Cost and 
Operational Cost Models
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UAM Vehicle Development and Operational 
Life Cycle Cost Models 
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Maintenance data adapted from Conklin and  
deDecker (rotorcraft technology)

Joby S4 
Quoted  
Unit Cost

Notional UAM vehicle 
Maximum speed = 170 knots 
15% profit margin

Life-Cycle 
Cost Model

Aircraft development cost equations  
adapted from Nicolai and Carichner (2012)

UAM aircraft life-cycle cost model 
include the following: 

• Vehicle unit cost 
• Number of annual operations 
• Maintenance hours per flight 

hour 
• Engine overhaul costs 
• Time between overhauls 
• Landing fee per landing 
• Percent of repositioning flights 
• Energy consumption 

performance (vs. block speed) 
• Energy cost ($/kW-hr) 
• Hangar cost 
• Pilot vs no pilot switch 
• Avionics and interior 

refurbishing costs 
• Load factor per flight 
• Depreciation 
• Life-cycle time
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$0.165 per kW-hr 
Load factor - 62.5%
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Four-Seat UAM Vehicle Economics: High Utilization and Moderate 
Number of Repositioning of Flights
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UAM Vehicle Costs in the Literature

Source: Air Traffic Management Exploration (ATM-X) UAM Demand Analysis: Deliverable 1.2 
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UAM Demand Models
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Calibrated Logit and Mixed Logit Models to Predict UAM Demand
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Metropolitan 
Area

UAM 
Model 

Developed

Model Structure Attributes Considered Model Scope Value of Time

Northern 
California

Commuter 
trips

Mixed Conditional 
Logit 

In-vehicle travel time, Out-
of-vehicle travel time, 
Number of transfers. Income 
level (3 categories)

4.3 million commuters 
17 counties around San 
Francisco Bay Area

Out-of-Vehicle VOTs 
Low Income $15.7/hr 
Medium Income $18.22/hr 
High Income  $29.30/hr

Cargo Parametric Market 
Share Model

High value goods High-value air freight 
Time-sensitive shipments

Not applicable

Southern 
California

Commuter 
trips

Mixed Logit Model Travel time, number of 
transfers, 

9.1 million commuter trips 
15 counties 

Airport trips Conditional Logit 
Models

Travel time, Travel cost, 
Resident, Non-resident, 
Business, Non-business, 
submodes constants

99,250 daily airport trips Business travelers $52/hr. Non-
business travelers $22/hr.

Cargo Parametric - Market 
Share Model

High value goods High-value air freight 
Time-sensitive shipments

Not applicable

Dallas-Forth 
Worth

Commuter 
trips

Mixed Logit Model Travel time, number of 
transfers

2.9 million commuter trips

Airport trips Conditional Logit 
Models

Travel time, Travel cost, 
Resident, Non-resident, 
Business, Non-business, 
submodes constants

45,750 daily airport trips Business travelers $57/hr. Non-
business travelers $36/hr.

Miami Commuter 
trips

Mixed Logit Model 
calibrated in Northern 
California

Travel time, number of 
transfers

2.5 million commuter trips



Air Transportation Systems Laboratory

Calibrated Logit and Mixed Logit Models to Predict UAM Demand

18

Typical Model Validation
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UAM Commuter Demand Data Workflow
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UAM Airport Trip Demand Workflow
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Class B Airspace Restrictions 
Reduce Airport UAM Trip Demand 

by 17% in the Dallas Area
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• Adding Class-B restrictions reduces demand by 10%-17%
• Adding Class-D vertiport restrictions further reduces demand by <1%
• Detouring around Class-D further reduces demand by 3%
• Adding Northflow restrictions further reduces demand by 8%-11%

• Longer UAM travel times due to airspace 
class B and D restrictions affect trip cost 

• UAM vertiport placement affected by 
airspace restrictions

Airspace 
restrictions 
developed by 
NASA Ames 
Research Center
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• Adding Class-B restrictions reduces demand by 35%-40%
• Adding Class-D vertiport restrictions further reduces demand by 7%-9%
• Detouring around Class-D further reduces demand by 5%-6%
• Adding Northflow restrictions further reduces demand by 5%-6%
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Class B Airspace Restrictions Reduce UAM 
Commuter Demand by 40%

75 UAM vertiports 
Dallas-Fort Worth Region
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At $3 per Passenger-Mile and Airspace Restrictions UAM Trips to 
Airport Remain Feasible 
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50 UAM vertiports and airspace restrictions

Airport Demand to 
LAX Airport

Airport Demand to 
DFW and DAL  Airports
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In Northern California, Doubling the Number of UAM 
Vertiports from 50 to 100 Increases UAM Commuter Demand 

by 27% at a Cost Per Mile $1.80
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Airport Demand to 
DFW and DAL  Airports
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For New York Commuter Demand 
is Reduced by 55% if Airspace 

Restrictions are Applied
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Scenario Restrictions
Vertiport Placement UAM Overflying

Scenario 1 None None

Scenario 2 Only in Class-B 
Airspace

Only in Class-B 
Airspace

Scenario 3 In Class-B and 
Class-D Airspace

In Class-B and 
Class-D Airspace

More UAM commuter trips: 
1) Large number of daily trips 
2) Higher cost of commuting



Air Transportation Systems Laboratory

Miami Commuter Demand
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Integrated UAM Demand Model Produces Flight Trajectories
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Sample Flight Tracks of UAM Aircraft 
in the Northern California Area

Estimated Day-Night Average Sound 
Level (assumes 10 dBA Reduction over Robinson R44)
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Preliminary Assessment of UAM Noise (Northern California)
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15 dBA Reduction compared to R4410 dBA Reduction compared to R44
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Preliminary Assessment of UAM Noise 
(Northern California)
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• Achieving a 15 dBA over the the reference helicopter used in the 
study (Robinson R22)  the land area affected by noise could 
decrease by 80% 

• The total highly annoyed population would be reduced by 80% 
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Noise Impacts Using 
the FAA Aviation 
Environmental 

Design Tool Analysis
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15 dBA Reduction compared to R44 10 dBA Reduction compared to R44

900 daily UAM operations
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Conclusions
• An integrated approach to study UAM operations has been 

developed 
• Model considers landing site placement, landing site cost and 

capacity limits 
• UAM demand is estimated using Conditional Logit or Mixed 

Logit models 
• For UAM to be successful, the analysis shows cost per passenger 

mile needs to be contained below $3 per passenger-mile  
• Beyond $3 per passenger mile, the commuter demand is 

relatively low (except in New York) 
• Airspace restrictions add 6-12% more distance to UAM trips 
• Airspace restrictions result in 20-55% fewer demand trips 

compared to unrestricted scenarios investigated
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