
Virginia Tech (A.A. Trani)

Queueing Theory

Dr. Antonio A. Trani

CEE 5614
Analysis of Air Transportation Systems

Fall 2012



 

Virginia Polytechnic Institute and State University

 

2 of 95

 

 Material Presented in this Section

 

The importance of queueing models in infrastructure 
planning and design cannot be overstated. 

Queueing models offer a simplified way to analyze 
critical areas inside an airport terminal to evaluate levels 
of service and operational performance.

 

Topics

 

Queueing Models
+ Background 
+ Analytic solutions for various disciplines
+ Applications to infrastructure planning
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Principles of Queueing Theory 

 

Historically starts with the work of A.K. Erlang while 
estimating queues for telephone systems

Applications are very numerous:

 

•

 

Transportation planning (vehicle delays in networks)

 

•

 

Public health facility design (emergency rooms)

 

•

 

Commerce and industry (waiting line analysis)

 

•

 

Communications infrastructure (switches and lines)
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Elements of a Queue

 

a) Input Source

b) Queue

c) Service facility

 

Arriving Entities
Served Entities

Service 
facility

Queue

Queueing SystemInput Source
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Specification of a Queue

 

•

 

Size of input source

 

•

 

Input function 

 

•

 

Queue discipline

 

•

 

Service discipline

 

•

 

Service facility configuration

 

•

 

Output function (distribution of service times)

 

Sample queue disciplines

 

•

 

FIFO - first in, first out

 

•

 

Time-based disciplines 

 

•

 

Priority discipline
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What Does a Queue Represent?

 

Queues represent the state of a system such as the number 
of people inside an airport terminal, the number of trucks 
waiting to be loaded at a construction site, the number of 
ships waiting to be unloaded in a dock, the number of 
aircraft holding in an imaginary racetrack flight pattern 
near an airport facility, etc. 

The important feature seems to be that the analysis is 
common to many realistic situations where a flows of 
traffic (including pedestrians movind inside airport 
terminals) can be described in terms of either continuous 
flows or discrete events.
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Types of Queues

 

Deterministic queues

 

 - Values of arrival funtion are not 
random variables (continuous flow) but do vary over time.

 

• Example of this process is the hydrodynamic 
approximation of pedestrian flows inside airport terminals

• “Bottleneck” analysis in transportation processes employs 
this technique

 

Stochastic queues

 

 - deal with random variables for 
arrival and service time functions.

 

• Queues are defined by probabilistic metrics such as the 
expected number of entities in the system, probability of 

 

n

 

 
entities in the system and so on
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Generalized Time Behavior of a Queue

 

The state of the system goes through two well defined 
regions of behavior: a) transient and b) steady-state 

Time (hrs)

State
of System

Transient Behavior

Steady-State
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Deterministic Queues

 

Deterministic Queues are analogous  to a continuous flow 
of entities passing over a point over time. As Morlok 
[Morlok, 1976] points out this type of analysis is usually 
carried out when the number of entities to be simulated is 
large as this will ensure a better match between the 
resulting cumulative stepped line representing the state of 
the system and the continuous approximation line 

The figure below depicts graphically a deterministic 
queue characterized by a region where demand exceeds 
supply for a period of time
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Deterministic Queues (Continuous)

Demand

Supply
Rates

Cumulative Flow

Cumulative Supply

Cumulative
Demand

Supply Deficit

Time

Lt

Wt

tin tout
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Deterministic Queues (Discrete Case)

Demand (λ)

Supply (µ)
Rates

Cumulative Flow

Cumulative Supply

Cumulative
Demand

Supply Deficit

Time∆t
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Deterministic Queues (Parameters)

 

a) The queue length, , (i.e., state of the system) 
corresponds to the maximum ordinate distance between 
the cumulative demand and supply curves 

b) The waiting time, , denoted by the horizontal 
distance between the two cumulative curves in the 
diagram is the individual waiting time of an entity 
arriving to the queue at time 

c) The total delay is the area under bounded by these two 
curves

d) The average delay time is the quotient of the total delay 
and the number of entities processed

Lt

Wt

tin
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Deterministic Queues

 

e) The average queue length is the quotient of the total 
delay and the time span of the delay (i.e., the time 
difference between the end and start of the delay)

Assumptions

Demand and supply curves are derived derived from 
known flow rate functions (

 

λ

 

 and 

 

µ

 

) which of course are 
functions of time. 

The diagrams shown represent a simplified scenario 
arising in many practical situations such as those 
encountered in traffic engineering (i.e., bottleneck 
analysis).    
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Deterministic Queueing
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Example : Freeway Bottleneck Analysis

 

A four lane freeway has a total directional demand of 
4,000 veh/hr during the morning peak period. One day an 
accident occurs at the freeway that blocks the right-hand 
side lane for 30 minutes (at time t=1.0 hours). The 
capacity per lane is 2,200 veh/hr.

a) Find the maximum number of cars queued.

b) Find the average delay imposed to all cars during the 
queue.
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Mathematical Equations to Work the 
Problem

λ(t) = 4000 ∀ t

µ(t) =
4400 if t < 1.0 hrs

2200 if 1 <= t < 1.5 hrs
4400 if t > 1.5 hrs

dL
dt

= λ(t)− µ(t)

In finite difference form we can solve the equation
for Lt  numerically

Lt = Lt−Δt +
dL
dt

⎛
⎝⎜

⎞
⎠⎟ Δt

Lt = Lt−Δt + λ(t)− µ(t)( )Δt

First-order differential equation
 to be solved

14a of 95



Virginia Tech (A.A. Trani)

Hand Calculations and Solution

• Integrate the values of demand and capacity in a 
piecewise fashion (over time)

• For example for interval 0 < t <1.0 hrs

14b of 95
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Hand Calculations and Solution

• For interval 1.0 <= t <1.5 hrs

14c of 95
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Hand Calculations and Solution

• For interval 1.5 <= t <3.75 hrs

14d of 95
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Cumulative Flow Diagram
(Integral of demand and supply functions)

red = cumulative demand
blue = cumulative supply 

14e of 95
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Excel Numerical Solution

14f of 95
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Observations

• We used the Euler numerical integration algorithm 
(fixed step size)

• When the value of:

• is negative, we do not add the value to the queue 
length (queues cannot be negative)

• The queue starts at t = 1.0 hours

• The queue length peaks at t = 1.5 hours

• The queue ends at t = 3.75 hrs

14g of 95
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Graphical Solution to Highway 
“Bottleneck” Problem

Time of
reduced
capacity

Time for
highest
queue 
length

Flow Rates
(demand and

supply)

Integral of
(demand -

supply) 
over time
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Graphical Solution to Highway 
“Bottleneck” Problem

Time of
reduced
capacity

Time for
highest
queue 
length
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Queue Length
(Lt)

Integral of 
Queue
Length

Lt
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Solutions

 

a) Find the maximum number of cars queued

By inspection the maximum number of cars queueing at 
the bottleneck are 900 passengers. 

b) Find the average delay imposed to all cars during the 
queue.

Calculate the area under the second curve (in the previous 
slide) and then divide by the number of cars that were 
delayed
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Graphical Solution to Highway 
“Bottleneck” Problem

Time of
reduced
capacity

Time for
highest
queue 
length
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Max Queue Length
(Lt) at time = 1.5 hrs

Integral of 
Queue
Length

Lt

~900 vehicles

Total Delay
= 1,237 veh-hr
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Some Statistics about the Problem

       Average arrival rate (cars/hr) = 4000

       Average capacity (cars/hr) = 3771

       Simulation Period (hours) = 5 (hours)

        Total delay (car-hr) = 1237

       Max queue length (cars) = 900
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Example : Lumped Service Model (Passengers at 
a Terminal Facility)

In the planning program for renovating an airport terminal 
facility it is important to estimate the requirements for the 
ground access area. It has been estimated that an hourly 
capacity of 1500 passengers can be adequately be served 
with the existing facilities at a medium size regional 
airport. 

Due to future expansion plans for the terminal, one third 
of the ground service area will be closed for 2 hours in 
order to perform inspection checks to ensure expansion 
compatibility. A recent passenger count reveals an arrival 
function as shown below.



Virginia Polytechnic Institute and State University 21 of 95

Example Problem (Airport Terminal)

λ = 1500 for 0 < t < 1               t in hours

λ = 500 for t > 1

where, λ is the arrival function (demand function) and t is 
the time in hours. Estimate the following parameters:
•The maximum queue length, L(t) max

•The total delay to passengers, Td

•The average length of queue, L
•The average waiting time, W
•The delay to a passenger arriving 30 minutes hour after 

the terminal closure
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Example Problem (Airport Terminal)

Solution:

The demand function has been given explicitly in the 
statement of the problem. The supply function as stated in 
the problem are deduced to be,

µ = 1000 if t < 2

µ = 1500 if t > 2

Plotting the demand and supply functions might help 
understanding the problem
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Example Problem (Airport Terminal)

Demand and Supply Functions for Example Problem

12:57 PM   7/7/93
0.00 0.50 1.00 1.50 2.00

Time

1 :

1 :

1 :

2 :

2 :

2 :

0.00

1000.00

2000.00

1: Passengers In 2: Passengers Served

1

1

1

1

2

2

2

2

Time (hrs)
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Example Problem (Airport Terminal)

To find the average queue length (L) during the period of 
interest, we evaluate the total area under the cumulative 
curves (to find total delay)

Td = 2 [(1/2)(1500-1000)] = 500 passengers-hour

Find the maximum number of passengers in the queue, 
L(t) max,

L(t)max = 1500 - 1000 = 500 passengers at time t=1.0 
hours

Find the average delay to a passenger (W)
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Example Problem (Airport Terminal)

 = 15 minutes

where, Td is the total delay and Nd is the number of 
passengers that where delayed during the queueing 
incident.

  = 250 passengers

where, Td is the total delay and td is the time that the 
queue lasts.

W Td

Nd

-----=

L Td

tq

-----=
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Example Problem (Airport Terminal)

Now we can find the delay for a passenger entering the 
terminal 30 minutes after the partial terminal closure 
occurs. Note that at t = 0.5 hours 750 passengers have 
entered the terminal before the passenger in question. 
Thus we need to find the time when the supply function, 
µ(t), achieves a value of 750 so that the passenger “gets 
serviced”. This occurs at,

(2.1)

therefore ∆t is just 15 minutes (the passenger actually 
leaves the terminal at a time t+∆t equal to 0.75 hours). 
This can be shown in the diagram on the next page.

µ t ∆t+( ) λ t( ) 750= =
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Example Problem (Airport Terminal)

Demand and Supply Functions for Example Problem

12:57 PM   7/7/93
0.00 0.50 1.00 1.50 2.00

Time

1 :

1 :

1 :

2 :

2 :

2 :

0.00

1000.00

2000.00

1: Passengers In 2: Passengers Served

1

1

1

1

2

2

2

2

Time (hrs)

Passenger leaves

Passenger enters



Virginia Polytechnic Institute and State University 28 of 95

Remarks About Deterministic Queues

• Introducing some time variations in the system we can 
easily grasp the benefit of the simulation

• Most of the queueing processes at airport terminals are 
non-steady thus analytic models seldom apply 

• Data typically exist on passenger behaviors over time 
that can be used to feed these deterministic, non-steady 
models

• The capacity function is perhaps the most difficult to 
wuantify because human performance is affected by the 
state of the system (i.e., queue length among others)
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Example:  Aircraft Delays Using 
Deterministic Queueing Model

• An airport has two parallel runways separated 5,000 feet 
away and oriented East-West

• The saturation capacity analysis for one of the runways 
yields the Pareto diagram shown in the following figure 

• Assume that the fleet mix operating at both runways is the 
same

• The diagram assumes that the runway is operated in mixed 
mode 

• The analysis was done for IFR conditions

29 of 95
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Airport Diagram

• Note: runways are used in segregated mode
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Pareto Diagram for a Single Runway 
at the Airport (Mixed Mode)

One-runway Pareto Diagram. Mixed Runway Use. IFR Conditions. 
Numbers in the Plot Represent (Departure, Arrival) Pairs.

30 of 95
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Airport Demand Function 
(Daily Demand)

Time (hrs)
(Center of hourly interval)

Arrival demand
(aircraft/hr)

Departure demand
(aircraft/hr)

0.5 7 6

1.5 10 6

2.5 4 6

3.5 3 4

4.5 10 4

5.5 21 17

6.5 22 41

7.5 33 51

8.5 40 73

9.5 38 63

10.5 32 41

11.5 20 43
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Airport Demand Function 
(Daily Demand) - Part 2

Time (hrs)
(Center of hourly interval)

Arrival demand
(aircraft/hr)

Departure demand
(aircraft/hr)

12.5 32 34

13.5 23 23

14.5 37 26

15.5 40 29

16.5 25 38

17.5 23 71

18.5 20 62

19.5 37 62

20.5 36 43

21.5 29 36

22.5 20 36

23.5 13 11
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Relevant Questions

a) Draw the Pareto capacity diagram for the complete airport 
runway system (i.e., both runways) if the runways are used in 
segregated mode in IFR conditions.

b) If the airport is operated in segregated mode, determine the 
average delay to arriving aircraft if the arrival demand 
function proposed by the airlines is shown in Table 1. Assume IFR 
conditions prevail in the design day.

c) If the airport is operated in segregated mode, determine the 
average delay to departing aircraft if the departure demand 
function proposed by the airlines is shown in Table 1. Assume IFR 
conditions prevail in the design day.

31b of 95
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Part (a) Pareto Diagram for Complete 
Airport (Segregated Mode)

31c of 95
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Part (b) Delays for Arriving Aircraft

• The problem is 
decomposed into 
two separate 
analyses: 

• delay 
calculation for 
arrivals and,

• delay 
calculation for 
departures

31d of 95
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Part (b) Delays for Arriving Aircraft

• Arrival demand and arrival runway capacity

Periods where demand > capacity

31e of 95
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Part (b) Queue Length Function
• Numerical integration solution for queue length function (Lt)

31f of 95

Use deterministic queue Matlab code: 
det_queue_enhanced.m

(see Matlab files for CEE 5614)

The maximum arrival queue 
length is estimated to be 14.53 

aircraft at 10:30 AM in the design 
day
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Part (b) Integral of Queue Length 
Function

• Numerical integration 
solution for the area 
under the curve of the 
queue length function (Lt)

31g of 95

Use deterministic queue Matlab code: 
det_queue_enhanced.m

(see Matlab files for CEE 5614)

Total delay is estimated to 
be 70.84 aircraft-hours
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Part (b) Find the Average Arrival Delay

• Three queues were observed in the period of analysis (one day)

• Total number of aircraft delayed are calculated for the periods 
when the queues persist

31h of 95

Total delay is estimated to 
be 70.84 aircraft-hours

Period 1 Period 2 Period 3
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Part (b) Cumulative Arrivals Function

31i of 95
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Part (b) Cumulative Arrivals

31j of 95

Time (hrs) Cumulative Arrivals Arrivals in Queueing Period

7.4 87

274-87 = 187

13.25 274

274-87 = 187

14.15 298

405-298=107

17.5 405

405-298=107

19.2 445

546-445=101

22.34 546

546-445=101

Total Arrivals Queued 395
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• Total delay = 70.84 aircraft-hours

• Total aircraft delayed = 395 aircraft

• Average delay per aircraft = 0.179 hours (or 10.7 
minutes)

Part (b) Find the Average Arrival Delay

31k of 95
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Part (c) Departure Delays

• Repeat the same process for departures

• Use departure saturation capacity found in the 
initial analysis (54 operations per hour)

31l of 95
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Part (c) Departure Demand Function

• Departure demand and departure runway capacity

Periods where departure demand > dep. capacity

31m of 95
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Part (c) Departure Queue Length Function

• Numerical integration solution for queue length function (Lt)

31o of 95

Use deterministic queue Matlab code: 
det_queue_enhanced.m

(see Matlab files for CEE 5614)

The maximum departure 
queue length is estimated to 
be 26.3 aircraft at 19:45 in 

the design day
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Part (c) Integral of Departure Queue 
Length Function

• Numerical integration 
solution for the area 
under the curve of the 
queue length function (Lt)

31p of 95

Use deterministic queue Matlab code: 
det_queue_enhanced.m

(see Matlab files for CEE 5614)

Total delay is estimated to 
be 136.7 aircraft-hours



Virginia Tech (A.A. Trani)

Part (c) Cumulative Departures Function

31q of 95
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Part (c) Cumulative Departures

31r of 95

Time (hrs) Cumulative Departures Departures in Queueing Period

7.7 113

354-113 = 241

12.1 354

354-113 = 241

17 506

776-506=270

22 776

776-506=270

Total Departures Queued 511
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• Total delay = 135.7 aircraft-hours

• Total aircraft delayed = 511 aircraft

• Average delay per aircraft = 0.27 hours (or 16
minutes)

Part (b) Find the Average Departure Delay

31s of 95



Virginia Tech (A.A. Trani)

Cumulative Demand and Supply Diagrams
(for Departure Operations)

31t of 95
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Matlab Source Code for Deterministic Queueing 
Model (main file)

% Deterministic queueing simulation
% T. Trani (Rev. Mar 99)
global demand capacity time 

% Enter demand function as an array of values over time

% general demand - capacity relationships
%
% demand = [70 40 50 60 20 10];
% capacity = [50 50 30 50 40 50];
% time = [0 10 20 30 40 50];

demand = [1500 1000 1200 500 500 500];
capacity = [1200 1200 1000 1000 1200 1200];
time = [0.00  1.00  1.500  1.75  2.00  3.00];
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% Compute min and maximum values for proper scaling in plots
mintime = min(time);
maxtime = max(time);
maxd  = max(demand);
maxc = max(capacity);
mind  = min(demand);
minc = min(capacity);
scale = round(.2 *(maxc+maxd)/
2)
minplot = min(minc,mind) - scale;
maxplot = max(maxc,maxd) + 
scale;

po = [0 0]; % intial number of 
passengers
to = mintime;
tf = maxtime;
tspan = [to tf];

% where:
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% to is the initial time to solve this equation
% tf is the final time
% tspan is the time span to solve the simulation

[t,p] = ode23('fqueue_2',tspan,po);

% Compute statistics

Ltmax = max(p(:,1));
tdelay = max(p(:,2));
a_demand = mean(demand);
a_capacity = mean(capacity);

  clc
  disp([blanks(5),'Deterministic Queueing Model '])
  disp(' ')
  disp(' ')
  disp([blanks(5),'  Average arrival rate (entities/time) = ', 
num2str(a_demand)])
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  disp([blanks(5),'  Average capacity (entities/time) = ', 
num2str(a_capacity)])
  disp([blanks(5),'  Simulation Period (time units) = ', num2str(maxtime)])

  disp(' ')
  
  disp(' ')
  disp([blanks(5),'  Total delay (entities-time) = ', num2str(tdelay)])
  disp([blanks(5),'  Max queue length (entities) = ', num2str(Ltmax)])
  disp(' ')

pause

% Plot the demand and supply functions

plot(time,demand,'b',time,capacity,'k')
xlabel('Time (minutes)')
ylabel('Demand or Cpacity (Entities/time)')
axis([mintime maxtime minplot maxplot])
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grid

pause
% Plot the results of the numerical integration procedure
subplot(2,1,1)
plot(t,p(:,1),'b')
xlabel('Time')
ylabel('Entities in Queue')
grid

subplot(2,1,2)
plot(t,p(:,2),'k')
xlabel('Time')
ylabel('Total Delay (Entities-time)')
grid
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Matlab Source Code for Deterministic Queueing 
Model (function file)

% Function file to integrate numerically a differential equation 
% describing a deterministic queueing system

function pprime = fqueue_2(t,p)
global demand capacity time

% Define the rate equations
demand_table = interp1(time,demand,t);
capacity_table = interp1(time,capacity,t);

if (demand_table < capacity_table) & (p > 0)
      pprime(1) = demand_table - capacity_table; % rate of change in state          
variable
elseif demand_table > capacity_table
      pprime(1) = demand_table - capacity_table; % rate of change in state 
variable
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else
          pprime(1) = 0.0; % avoids accumulation of entities
end

pprime(2) = p(1); % integrates the delay 
curve over time
pprime = pprime';
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Output of Deterministic Queueing Model

     Deterministic Queueing Model 
 
       Average arrival rate (entities/time) = 866.6667
       Average capacity (entities/time) = 1133.3333
       Simulation Period (time units) = 3
 
       Total delay (entities-time) = 94.8925
       Max queue length (entities) = 89.6247
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Stochastic Queueing Theory (Nomenclature per 
Hillier and Lieberman)

These models can only be generalized for simple arrival 
and departure functions since the involvement of complex 
functions make their analytic solution almost impossible 
to achieve. The process to be described first is the so-
called birth and death process that is completely 
analogous to the arrival and departure of an entity from 
the queueing system in hand.

Before we try to describe the mathematical equations it is 
necessary to understand the basic principles of the 
stochastic queue and its nomenclature.



Virginia Polytechnic Institute and State University 41 of 95

Fundamental Elements of a Queueing System

Queue
Service
Facility

Queueing System

Entering
Customers

Served
Customers
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Nomenclature  

Queue length = No. of customers waiting for service

 L(t) = State of the system - customers in queue at time t

N(t) = Number of customers in queueing system at time t

P(t)  = Prob. of exactly n customers are in queueing 
system at time t

 s  =      No. of servers (parallel service)

λn =      Mean arrival rate

µn =      Mean service rate for overall system 
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Other Definitions in Queueing Systems

If λn is constant for all n then (1/λ) it represents the 
interarrival time. Also, is µn is constant for all n > 1 
(constant for each busy server) then µn = m service rate 
and (1/µ) is the service time (mean). 

Finally, for a multiserver system sµ is the total service 
rate and also ρ = l/sµ is the utilization factor. This is the 
amount of time that the service facility is being used.
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Stochastic Queueing Systems

The idea behind the queueing process is to analyze 
steady-state conditions. Lets define some notation 
applicable for steady-state conditions,

N = No. of customers in queueing system

Pn = Prob. of exactly n customers are in queueing system

L = Expected no. of customers in queueing system

Lq   = Queue length (expected)

W = Waiting time in system (includes service time)

Wq  = Waiting time in queue
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There are some basic relationships that have beed 
derived in standard textbooks in operations research 
[Hillier and Lieberman, 1991]. Some of these more basic 
relationships are:

L   = λW

Lq = λWq

The analysis of stochastic queueing systems can be easily 
understood with the use of “Birth-Death” rate diagrams as 
illustrated in the next figure. Here the transitions of a 
system are illustrated by the state conditions 0, 1, 2, 3,.. 
etc. Each state corresponds to a situation where there are 
n customers in the system. This implies that state 0 means 
that the system is idle (i,e., no customers), system at state 
1 means there is one customer and so forth.
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Rate Diagram for Birth-and-Rate Process

Note: Only possible transitions in the state of the system 
are shown.

0 1 2 n-1

λλλλ0000 λλλλ1111

µµµµ1111 µµµµ2222

n

λλλλn-1

µµµµn

....    ....    ....    ....    ....    ....    ....
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Stochastic Queueing Systems

For a queue to achieve steady-state we require that all 
rates in equal the rates out or in other words that all 
transitions out are equal to all the transitions in. This 
implies that there has to be a balance between entering 
and leaving entities.

Consider state 0. This state can only be reached from state 
1 if one departure occurs.   The steady state probability of 
being in state 1 (P1) represents the portion of the time that 
it would be possible to enter state 0. The mean rate at 
which this happens is µ1P1. Using the same argument the 
mean occurrence rate of the leaving incidents must be λ0 
P0 to the balance equation,
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Stochastic Queueing Systems

µ1P1 = λ0P0

For every other state there are two possible transitions. 
Both into and out of the state.

 λ0 P0 = P1µ1

 λ0 P0 + µ2 P2 = λ1P1 + µ1 P1

 λ1 P1 + µ3 P3 = λ2P2 + µ2 P2

 λ2 P2 + µ4 P4 = λ3P3 + µ3 P3

until, λn-1 Pn-1 + µn+1 Pn+1 = λnµn + µn Pn
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Stochastic Queueing Systems

Since we are interested in the probabilities of the system 
in every state n want to know the Pn's in the process. The 
idea is to solve these equations in terms of one variable 
(say P0) as there is one more variable than equations.

   For every state we have,

P1 = λ0 /µ1 P0

P2 = λlλ0 / µ1 µ2  P0

P3 = λ2 λ1 λ0 / µ1 µ2 µ3 P0

Pn+1 = λn  ..... λ1 λ0 / µ1 µ2 ...... µn+1  P0
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Stochastic Queueing Systems

Let Cn be defined as,

Cn = λn-1  ..... λ1λ0 / µ1 µ2 ...... µn

Once this is accomplished we can determine the values of 
all probabilities since the sum of all have to equate to 
unity.

Pn

i 0=

n

∑ 1=

P0 Pn

i 1=

n

∑+ 1=
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Stochastic Queueing Systems

Solving for P0 we have,

Now we are in the position to solve for the remaining 
queue parameters, L the average no. of entities in the 
system, Lq, the average number of customers in the 

P0 CnP0

i 1=

n

∑+ 1=

P0
1

1 Cn

i 1=

n

∑+

------------------------=
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queue, W, the average waiting time in the system and 
Wq the average waiting time in the queue. 

 

 

Pn CnP0=

L nPn

n 1=

∞

∑=

Lq n s–( )Pn

n s=

∞

∑=

W L
λ
---=

Wq
Lq

λ
-----=



Virginia Polytechnic Institute and State University 53 of 95

This process can then be repeated for specific 
queueing scenarios where the number of customers is 
finite, infinite, etc. and for one or multiple servers.  All 
systems can be derived using “birth-death” rate diagrams. 
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Stochastic Queueing Systems

Depending on the simplifying assumptions made, 
queueing systems can be solved analytically. 

The following section presents equations for the 
following queueing systems when poisson arrivals and 
negative exponential service times apply:

a) Single server - infinite source (constant  and )

b) Multiple server - infinite source (constant  and )

c) Single server - finite source (constant  and )

d) Multiple server - finite source (constant  and )

λ µ

λ µ

λ µ

λ µ
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Stochastic Queueing Systems Nomenclature

The idea behind the queueing process is to analyze 
steady-state conditions. Lets define some notation 
applicable for steady-state conditions,

N = No. of customers in queueing system

Pn = Prob. of exactly n customers are in queueing system

L = Expected no. of customers in queueing system

Lq   = Queue length (expected)

W = Waiting time in system (includes service time)

Wq  = Waiting time in queue
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Stochastic Queueing Systems

There are some basic relationships that have beed derived 
in standard textbooks in operations research [Hillier and 
Lieberman, 1991]. Some of these more basic relationships 
are:

L   = λW

Lq = λWq
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Stochastic Queueing Systems

Single server - infinite source (constant  and )

Assumptions:

a) Probability between arrivals is negative exponential 
with parameter 

b) Probability between service completions is negative 
exponential with parameter 

c) Only one arrival or service occurs at a given time

λ µ

λn

µn
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Single server - Infinite Source (Constant  and )

 Utilization factor

 

 for n = 0,1,2,3,.....

 expected number of entities in the system

 expected no. of entities in the queue

λ µ

ρ λ µ⁄=

P0
1

1 ρn

n 1=

∞

∑+

----------------------- ρn

n 0=

∞

∑ 
 
 

1–

1
1 ρ–
------------ 
 

1–

1 ρ–= = = =

Pn ρnP0 1 ρ–( )ρn= =

L λ
µ λ–
------------=

Lq
λ2

µ λ–( )µ
---------------------=
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 average waiting time in the queueing 

system

 average waiting time in the queue

 probability distribution of waiting 
times 

(including the service potion in the SF)

W 1
µ λ–
------------=

Wq
λ

µ λ–( )µ
---------------------=

P W t>( ) e µ 1 ρ–( )t–=
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Multiple Server  

Infinite source (constant  and )

Assumptions:

a) Probability between arrivals is negative exponential 
with parameter 

b) Probability between service completions is negative 
exponential with parameter 

c) Only one arrival or service occurs at a given time

 

λ µ

λn

µn
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Multiple Server  - Infinite Source (constant  , )

 utilization factor of the facility

 

idle probability

  

probability of n entities in the system

λ µ

ρ λ sµ⁄=

P0 1 λ µ⁄( )n

n!
----------------- λ µ⁄( )s

s!
----------------- 1

1 λ sµ⁄( )–
--------------------------- 
 +

n 0=

s 1–

∑ 
 
 
⁄=

Pn

λ µ⁄( )n

n!
-----------------P0

λ µ⁄( )n

s!sn s–
-----------------P0







=

0 n s≤ ≤

n s≥
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expected number of entities in system

 expected number of entities in queue

 average waiting time in queue

 average waiting time in system

Finally the probability distribution of waiting times is,

L
ρP0

λ
µ
--- 
 

s

s! 1 ρ–( )2
----------------------- λ

µ
---+=

Lq

ρP0
λ
µ
--- 
 

s

s! 1 ρ–( )2
-----------------------=

Wq
Lq

λ
-----=

W L
λ
--- Wq

1
λ
---+= =
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if  then use

P W t>( ) e µt– 1
P0

λ
µ
--- 
 

s

s! 1 ρ–( )
--------------------- 1 e µt s 1– λ µ⁄–( )––

s 1– λ µ⁄–
-------------------------------- 
 +=

s 1– λ µ⁄– 0=

1 e µt s 1– λ µ⁄–( )––
s 1– λ µ⁄–

-------------------------------- µt=
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Single Server  - Finite Source (constant  and )

Assumptions:

a) Interarrival times have a negative exponential PDF with 
parameter 

b) Probability between service completions is negative 
exponential with parameter 

c) Only one arrival or service occurs at a given time

d) M is the total number of entities to be served (calling 
population)

λ µ

λn

µn
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 Single Server  - Finite Source (constant  and )

 utilization factor of the facility

 idle probability

 for  probability 

of n entities in the system

 expected number of entities in 

queue

λ µ

ρ λ µ⁄=

P0 1 M!
M n–( )!

-------------------- λ µ⁄( )n

 
 

n 0=

M

∑⁄=

Pn
M!

M n–( )!
-------------------- λ µ⁄( )nP0= n 1 2 3 …M, , ,=

Lq M µ λ+
λ

------------- 1 P0–( )–=
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 expected number of entities in 

system

 average waiting time in queue

 average waiting time in system

where:

 average arrival rate

L M µ
λ
--- 1 P0–( )–=

Wq
Lq

λ
-----=

W L

λ
---=

λ λ M L–( )=
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Multiple Server Cases   

  Finite source (constant  and )

Assumptions:

a) Interarrival times have a negative exponential PDF with 
parameter 

b) Probability between service completions is negative 
exponential with parameter 

c) Only one arrival or service occurs at a given time

d) M is the total number of entities to be served (calling 
population)

λ µ

λn

µn
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Multiple Server  - Finite Source (constant  and 
)

 utilization factor of the facility

 idle probability

   if     

λ

µ

ρ λ µ⁄ s=

P0 1 M!
M n–( )!n!

-------------------------- λ µ⁄( )n

 
  M!

M n–( )!s!sn s–
---------------------------------- λ µ⁄( )n

 
 

n s=

M

∑+
n 0=

s 1–

∑⁄=

Pn

M!
M n–( )!n!

-------------------------- λ µ⁄( )nP0

M!
M n–( )!s!sn s–

---------------------------------- λ µ⁄( )nP0

0







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0 n s≤ ≤

s n M≤ ≤

n M≥
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 expected number of entities in 

queue

 

expected number of entities in system

 average waiting time in queue

 average waiting time in system

Lq n s–( )Pn

n s=

M

∑=

L nPn

n 0=

M

∑ nPn Lq s 1 Pn

n 0=

s 1–

∑–
 
 
 

+ +
n 0=

s 1–

∑= =

Wq
Lq

λ
-----=

W L

λ
---=
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where:

 average arrival rateλ λ M L–( )=
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Example (3): Level of Service at Security 
Checkpoints

The airport shown in the next figures has two security 
checkpoints for all passengers boarding aircraft. Each 
security check point has two x-ray machines. A survey 
reveals that on the average a passenger takes 45 seconds 
to go through the system (negative exponential 
distribution service time). 

The arrival rate is known to be random (this equates to a 
Poisson distribution) with a mean arrival rate of one 
passenger every 25 seconds.

In the design year (2010) the demand for services is 
expected to grow by 60% compared to that today.
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Relevent Operational Questions

a) What is the current utilization of the queueing system 
(i.e., two x-ray machines)? 

b) What should be the number of x-ray machines for the 
design year of this terminal (year 2020) if the maximum 
tolerable waiting time in the queue is 2 minutes?

c) What is the expected number of passengers at the 
checkpoint area on a typical day in the design year (year 
2020)? Assume a 60% growth in demand.

d) What is the new utilization of the future facility?

e) What is the probability that more than 4 passengers 
wait for service in the design year?
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Airport Terminal Layout
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Security Check Point Layout

Queueing System Service Facility
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Security Check Point Solutions

a) Utilization of the facility, ρ. Note that this is a multiple 
server case with infinite source. 

ρ = λ / (sµ) = 144/(2*80) = 0.90

Other queueing parameters are found using the steady-
state equations for a multi-server queueing system with 
infinite population are:
    
     Idle probability  =   0.052632
     Expected No. of customers in queue (Lq)  =   7.6737
     Expected No. of customers in system (L)   =   9.4737
     Average Waiting Time in Queue  =   192 s
     Average Waiting Time in System   =   237 s
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b) The solution to this part is done by trail and error 
(unless you have access to design charts used in queueing 
models. As a first trial lets assume that the number of x-
ray machines is 3 (s=3).

Finding Po, 

Po = .0097 or less than 1% of the time the facility is idle

Find the waiting time in the queue,

Wq = 332 s

Since this waiting time violates the desired two minute 
maximum it is suggested that we try a higher number of 
x-ray machines to expedite service (at the expense of 

P0
λ µ⁄( )2

n!
----------------- λ µ⁄( )s

s!
----------------- 1

1 λ sµ⁄( )–
--------------------------- 
 +

n 0=

s 1–

∑=



Virginia Polytechnic Institute and State University 77 of 95

cost). The following figure illustrates the sensitivity 
of Po and Lq as the number of servers is increased. 

Note that four x-ray machines are needed to provide the 
desired average waiting time, Wq.
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Sensitivity of Po with S

Note the quick variations in Po as S increases.
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Sensitivity of L with S
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Sensitivity of Lq with S
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Sensitivity of Wq with S

This analysis demonstrates that 4 x-ray machines are 
needed to satisfy the 2-minute operational design 
constraint.
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Sensitivity of W with S

Note how fast the waiting time function decreases with S
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Security Check Point Results

c) The expected number of passengers in the system is 
(with S = 4),

L =  4.04 passengers in the system on the average design 
year day.

d) The utilization of the improved facility (i.e., four x-ray 
machines) is

ρ = λ / (sµ) = 230/ (4*80) = 0.72

L
ρP0

λ
µ
--- 
 

s

s! 1 ρ–( )2
----------------------- λ

µ
---+=



Virginia Polytechnic Institute and State University 84 of 95

e) The probability that more than four passengers 
wait for service is just the probability that more than eight 
passengers are in the queueing system, since four are 
being served and more than four wait.

where,

 if 

 if 

P n 8>( ) 1 Pn

n 0=

8

∑–=

Pn
λ µ⁄( )n

n!
-----------------P0= n s≤

Pn
λ µ⁄( )n

s!sn s–
-----------------P0= n s>
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from where, Pn > 8 is 0.0879. 

Note that this probability is low and therefore the facility 
seems properly designed to handle the majority of the 
expected traffic within the two-minute waiting time 
constraint.
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PDF of Customers in System (L)

The PDF below illustrates the stochastic process resulting 
from poisson arrivals and neg. exponential service times
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Matlab Computer Code

% Multi-server queue equations with infinite population

% Sc = Number of servers
% Lambda = arrival rate
% Mu = Service rate per server
% Rho = utilization factor
% Po = Idle probability
% L = Expected no of entities in the system
% Lq = Expected no of entities in the queue
% nlast - last probability to be computed

% Initial conditions

  S=5;
  Lambda=3;
  Mu = 4/3;
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  nlast = 10; % last probability 
value computed
  
  Rho=Lambda/(S*Mu);   

% Find Po
    Po_inverse=0;
    sum_den=0;

  for i=0:S-1 % for the first term in the 
denominator (den_1) 
    den_1=(Lambda/Mu)^i/fct(i);
    sum_den=sum_den+den_1;
  end

    den_2=(Lambda/Mu)^S/(fct(S)*(1-Rho)); % for the second part of den 
(den_2)   
    Po_inverse=sum_den+den_2;
    Po=1/Po_inverse



Virginia Polytechnic Institute and State University 89 of 95

% Find probabilities (Pn)

Pn(1) = Po;     % Initializes the first element of Pn column vector to be Po
n(1) = 0;        % Vector to keep track of number of entities in system

% loop to compute probabilities of n entities in the system

for j=1:1:nlast
       n(j+1) = j;
       if (j) <= S
             Pn(j+1) = (Lambda/Mu)^j/fct(j) * Po;
       else
              Pn(j+1) = (Lambda/Mu)^j/(fct(S) * Sc^(j-S)) * Po;
       end
end

% Queue measures of effectiveness

  Lq=(Lambda/Mu)^S*Rho*Po/(fct(S)*(1-Rho)^2)           
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  L=Lq+Lambda/Mu   
  Wq=Lq/Lambda 
  W = L/Lambda    
  
  plot(n,Pn)
  xlabel('Number of entities')
  ylabel('probability')     
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Example 4 - Airport Operations

Assume IFR conditions to a large hub airport with

• Arrival rates to metering point are 45 aircraft/hr

• Service times dictated by in-trail separations (120 s 
headways)

Runway 09L-27R

Runway 09R-27L

4300 ft.

Common Arrival
Metering Point
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Some Results of this Simple Model

Parameter Numerical Values

45 aircraft/hr to arrival metering point

30 aircraft per runway per hour

0.143
 0.750

 3.42 aircraft (includes those in service)

2.57 minutes per aircraft

4.57 minutes per aircraft

λ

µ

Po

ρ

L

Wq

W
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Sensitivity Analysis

Lets vary the arrival rate ( ) from 20 to 55 per hour and 
see the effect on the aircraft delay function.
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Sensitivity of  with Demand

The following diagram plots the sensitivity of the 
expected number of aircraft holding vs. the demand 
function

Lq
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Virginia Tech (A.A. Trani)

Example # 5 Seaport Operations

• Seaport facility with 4 berths (a beth is an area where 
ships dock for loading/unloading)

• Arrivals are random with a mean of 2.5 arrivals per day

• Average service time for a ship is 0.9 days (assume a 
negative exponential distribution)

• Find:

• Expected waiting time and total cost of delays per year if 
the average delay cost is $12,000 per day per ship

94a



Virginia Tech (A.A. Trani)

Solution (use Stochastic Queueing Model 
- Infinite Population)

94b
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Solution (Seaport Example)

94c
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Solution (Seaport Example)

94d
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Others Uses of Queueing Models
(Facilities Planning)

• Queueing models can be used to estimate the life cycle 
cost of a facility

• Using the expected delays we can estimate times when a 
facility needs to be upgraded

• For example,

• Suppose the demand function (i.e., number of ships 
arriving to port) for ships arriving to port increases 10% 
per year

• Determine the year when new berths will be required if 
the port authority wants to maintain waiting times below 
0.5 days. 

94e
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Calculations for Seaport Example

Time (years)0 1 2 3

94f
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Calculations for Seaport Example

94g
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Calculations for Seaport Example

94h
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Undiscounted Annual Delay Costs
(Lag Solution)

$12,000 per hour per ship
delay costs

94i
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Construction Cost Profile (Seaport)
(Lag Solution)

$50 Million per Berth

94j
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Total Annual Cost (Seaport - Lag Solution)

$50 Million per Berth

94k
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Lead Solution for Berth Construction

94l
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Lead Solution for Berth Construction

94m
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Comparing Both Solutions
Life Cycle Cost Analysis

94n
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Conclusions About Analytic Queueing Models

Advantages:
• Good traceability of causality between variables

• Good only for first order approximations

• Easy to implement

Disadvantages:
• Too simple to analyze small changes in a complex system

• Cannot model transient behaviors very well

• Large errors are possible because secondary effects are neglected

• Limited to cases where PDF has a close form solution
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